MİMARLIK HİZMETİ KAPSAMINDA BİNA BİLGİ MODELLEME:
"G VİLLA" KONUT PROJESİ

YÜKSEK LİSANS TEZİ

Fahriye Gözde ÇUHADAR
1409221004

Anabilim Dalı: Mimarlık
Programı: Mimarlık

Tez Danışmanı : Prof. Dr. Mehmet Şener KÜÇÜKDOĞU

NİSAN 2017
MİMARLIK HİZMETİ KAPSAMINDA BİNA BİLGİ MODELLEME: "G VİLLA" KONUT PROJESİ

YÜKSEK LİSANS TEZİ

Fahriye Gözde ÇUHADAR
1409221004

Anabilim Dalı: Mimarlık
Programı: Mimarlık

Tez Danışmanı: Prof. Dr. Mehmet Şener KÜÇÜKDOĞU

Jüri Üyeleri: Prof.Dr. Burçin Cem ARABACIOĞLU
Yrd.Doç.Dr. Serhat KUT

NİSAN 2017
ÖNSÖZ

Tez çalışmam süresince bana sağlanığı bilimsel destek ve bu önemli konuya yönlendirmeleri için değerli danışmanım Sayın Prof.Dr. Mehmet Şener KÜÇÜKDOĞU'ya teşekkür ederim.

Tezim konusunda verdiği fikirler ve yaptığı katkıları için Yrd. Doç. Serhat KUT'a teşekkür ederim.

Bu süreçte yanında olan ve manevi desteklerini hiç esirgemeyen değerli aileme; sonsuz teşekkürlerimi ve sevgilerimi sunarım.

Nisan 2017

Fahriye Gözde ÇUHADAR
İÇİNDEKİLER

ÖNSÖZ... i
KİSALTMALAR.. iii
TABLO LİSTESİ... iv
ŞEKİL LİSTESİ... v
ÖZET.. vi
ABSTRACT... viii
1. GİRİŞ... 1
 1.1. Çalışmanın Amacı .. 1
 1.2. Çalışmanın Kapsamı ... 1
2. BİM NEDİR?.. 3
 2.1. BİM'e Genel Bakış .. 3
 2.2. BİM'in Tarihsel Gelişim Süreci .. 4
 2.3. Ülkelerin BİM Yaklaşımı ... 7
 2.4. Kamu ya da Özel Kuruluşların Gerçekleştirdiği BİM Düzenlemeleri 8
 2.5. Eğitim Kurumlarının Gerçekleştirdiği BİM Düzenlemeleri 10
 2.6. BİM'in Düzeyleri ... 10
 2.8. BİM Tabanlı Tasarım Araçları .. 12
 2.9. BİM Tabanlı Yazılımların Getirdiği Yenilikler .. 16
 2.10. BİM'in Yapı Planlama ve BIM'de Kullanım Alanları .. 22
 2.11. BİM'in Proje Ekibinin Görevleri ... 23
 2.12. Yapıma Sürecinde BİM ... 23
 2.13. BİM'in Bütünleşme proje süreçine rolü .. 25
 2.15. BİM'in Sağladığı Avantajlar ... 32
 2.16. BİM'in Getirileri ve Zararlari .. 34
 2.17. Bölüm Sonucu ... 35
3. REVİT ARCHITECTURE İLE TÜRKİYE'DEKİ MİMARLIK OFİSLERİN KULLANIM DENEYİMLERİ ... 37
 3.15. Bölüm Sonucu ... 41
4. AUTODESK REVİT ARCHİTECTURE İLE "G VİLLA" KONUT PROJESİ" 43
 4.1. BİM ile Mimari Proje ... 43
 4.2. BİM ile Statik Projesi .. 52
 4.3. BİM ile Mekanik Tesisat Projesi .. 52
 4.4. BİM ile Elektrik Tesisat Projesi ... 58
 4.5. BİM ile Sıhhi Tesisat Projesi .. 58
 4.6. Bölüm Sonucu ... 65
5. SONUÇLAR VE ÖNERİLER .. 67
KAYNAKLAR.. 68
EKLER.. 72
ÖZGEÇMİŞ .. 79
KISALTMALAR

BIM : Building Information Modelling
CAD : Computer Aided Design, (Bilgisayar Destekli Tasarım)
2D : İki Boyutlu
3D : Üç Boyutlu
BDT : Bilgisayar Destekli Tasarım
MTI : Massachusetts Institute of Technology
ENIAC : Electronic Numerical Integrator and Computer
DWG : 2 veya 3 Boyutlu Dizayn Datosı Saklayan Dosya Formatı
DXF : 2 veya 3 Boyutlu Dizayn Datosı Değişimine Yarayan Format
GLIDE : Graphical Language for Interactive Design
AGC : Associated General Contractors of America
NIBS : National Institute for Building Sciences
GSA : General Service Administration
BCA : The Building Construction Authority
ASC : Associate Schools Of Construction
IFC : Industry Foundation Classes
ODBC : Open Database Connectivity
TABLO LİSTESİ

Tablo2.1. Geleneksel Çizim Tekniği (CAD) İle BIM Karşılaştırması [57].............................. 6
Tablo3.1. Firmaların BIM Sürecinde Çalışmaları[36]...37
ŞEKİL LİSTESİ

Şekil 2. 1. BIM’ın Farklı Evrelerde Farklı Paydaşlar Tarafından Kullanılmasını [58] 3
Şekil 2. 2. Ivan Surtherland’ın Sketchpad Uygulaması [32] ... 4
Şekil 2. 4. Revit Aracı Çubuğunun Yapı Elemanları [32] .. 6
Şekil 2. 5. BIM ve 2D CAD ile Projelerin Gelişim Süreçlerinin Karşılaştırılıkları [42] 7
Şekil 2. 6. Bilgisayar Destekli Tasarım Araclarının Performans- Gelişmişlik Düzeylelerinin Grafiksel Gösterimi [33] ... 7
Şekil 2. 7. Kuzey Amerika’da BIM’e Adaptasyon [59] ... 8
Şekil 2. 8. BIM Olgunluk Diyagramı [51] ... 11
Şekil 2. 9. Düzey 3 teki BIM Modeli [50] ... 12
Şekil 2.10. Revit Yazılımının Kullanıcı Arayüzü [52] ... 13
Şekil 2.11. ArchiCAD Arayüzü [12] ... 14
Şekil 2.12. Alpplan Arayüzü [53] .. 15
Şekil 2.13. Revit Çalısmasuya Yapılan GMW İstanbul Medine Hızlı Tren İstasyon Projesi Mimari, Mekanik ve Statik Projeler Arası Çakışma Tespiti 17
Şekil 2.14. Koordine Edilmiş Tesistat Sistemi [38] .. 18
Şekil 2.15. BIM’in Bilgi Aği [41] ... 18
Şekil 2.16. Yapı Modelinin Kesit, 3D ve Pozlama [54] ... 19
Şekil 2.18. Girişten Merdiven Rithe Değeri İçin Hata Mesajı [42] ... 20
Şekil 2.20. Metraj Listesi [33] ... 21
Şekil 2.21. BIM Süreçleri [55] ... 22
Şekil 2.23. BIM Modelinin Otomatik Kiriş Hesabı [36] ... 24
Şekil 2.24. Revit 2D ve 3D Çizim [57] .. 25
Şekil 2.25. BIM ile Bütünleşik Proje Süreci [24] ... 27
Şekil 2.26. Flint Motor Fabrikası Ek Binası Proje Süreci .. 28
Şekil 2.27. Flint Motor Fabrikası Ek Binası Proje İmzalama Süreci .. 30
Şekil 2.28. Flint Motor Fabrikası Ek Binası [43] ... 32
Şekil 2.29. BIM Uygulamasının Olumu Sonuç Vermesinde Etkisi Olan Kuvvetler [57]33
Şekil 2.30. BIM’nin Pafta Düzeni [41] ... 34

Şekil 4. 1. "G Villa Konut Projesi" 3D ... 43
Şekil 4. 2. "G Villa Projesi" 1.Bodrum Kat Planı .. 45
Şekil 4. 3. "G Villa Projesi" Zemin Kat Planı .. 46
Şekil 4. 4. "G Villa Projesi" 1.Normal Kat Planı ... 47
Şekil 4. 7. "G Villa Projesi" B-B Kesiti ... 50
Şekil 4. 8. "G Villa Projesi" C-C Kesiti ... 51
Şekil 4. 9. "G Villa Projesi" İşkelet Sistemi .. 52
Şekil 4.10. "G Villa Projesi" 3D Mekanik Tesisiyasi ... 53
Şekil 4.16. "G Villa Projesi" Zemin Kat Sihhi Tesistat Planı ... 60
Şekil 4.20. "G Villa Projesi" Mutafık Sihhi Tesistat 3D ... 64
Şekil 4.21. "G Villa Projesi" Banyo-Wc Sihhi Tesistat 3D ... 64
Şekil 4.22. "G Villa Projesi" 3D Görünümü .. 66
ÖZET

MİMARLIK HİZMETİ KAPSAMINDA BİNA BİLGİ MODELLERİ:

"G VİLLA" KONUT PROJESİ

FAHİRİYE GÖZDE ÇUHADAR

Günümüzde projelerin yürütülmesi; tasarımların planlanan şekilde tamamlanmasının yanı sıra katılımcıların meydana gelebilecek sorunları ne şekilde ve hangi hızda çözüme erişirebileceklerine bağlıdır. Farklı katılımcıların bir arada bulunduğu projelerde, tarafların ortak amacı projeyi belirlenen bütçe ve sürede, hedeflenen kaynaklarla bitirmektir. Yine de, yapı projelerinin karmaşık ve değişik yapı şarımı uyuşmazlıklarını ve beraberinde getirir.

Geçmişte bilgisayarlar sadece genel problemlerin çözümünde kullanılırken günümüzde çok değişik ve karmaşık fonksiyonları gerçekleştirebilir, farklı veriler üretbilib durumdadırlar. Bilgisayarlar sayesinde; iletişim, veri yönetimi ve tasarım alanlarında yeni alışkanlıklar edinilmişdir. Böylece, bilgi üretim hızı yükselmiştir ve bilgiye ulaşım kolaylaşmıştır.

Yapı sektörü de bilişim teknolojilerindeki yenilikler ve değişimler sayesinde gelişmiştir. 20.yüzyılda yapıların kullanım amaçlarının çeşitlilik göstermesiyle farklı tasarım modelleri geliştirilmeye başlanmıştır. Tasarım modellerinin hayata geçirilmesi aşamasında kendine özgü tasarım ve yapı sürecine sahip olan projeler ortaya çıkmıştır.

İnşaat süreçleri boyunca farklı disiplinler arası iletişim ve koordinasyonu sağlayan bina bilgi sistemlerinin mimari proje aşamalarında kullanımının artması daha gelişmiş modellerin ortaya çıkmasına sebep olmuştur. Bina bilgi sistemleri; tasarım, proje, planlama, pazarlama, kaynak yönetimi, bilgi paylaşımı, işletme gibi konularda uyum içinde çalışma ihtiyacına karşılık derecede bir şekilde karşılanmıştır.

BIM; projedeki ürünlerin iki değil üç boyutlu olarak oluşturduğu model analizleri sunan, proje katılımcıları arasındaki işbirliğini destekleyen, bilgi paylaşımı
sağlayan bir sistemdir. Etkin kullanılması durumunda sağladığı işbirliği sayesinde süreç içerisindeki hata oranını azaltan, zaman ve maliyet açısından kar sağlayan, proje boyunca (planlama, tasarım, yapım, operasyon, yıkım aşamalarında) varlığını sürdürüen bir bilgi kaynağı olarak tanımlanmaktadır. BIM, gelişen teknolojinin de yardımıyla bu taleplerin ve gerekliliklerin gerçekleştirilmesi için geliştirilmiştir. Bu tez çalışmasının sonunda BIM özellikleri kullanılarak Revit programı aracılığıyla "G VİLLA" konut projesi tasarlanmıştır.

Anahtar Kelimeler: BIM, Bina Bilgi Modéllemesi, REVIT, Alt Yapı Sistemleri
In today's world, execution of architectural projects depends on participants’ ways of finding solutions to problems that might occur and how fast they can solve those problems in addition to completion of designs as scheduled. In projects where different participants work together, the main purpose of the participants is to finalize the project in time with the resources and budget planned. Nevertheless, complex and variable structures of construction projects bring divergencies along.

In the past, computers were used only to find solutions to general problems whereas today, they can perform different and complex functions and are able to provide different data. Thanks to computers, new habitudes are gained in the fields of communication, data management and design. Thus, it has become easier to reach information and data production has accelerated.

Thanks to innovations and developments in the information technologies, building sector has also developed. In the 20th century, different design models have been devised due to the varieties of usage in intended purposes of constructions. Projects with original designs and construction process have emerged while design models have been being implemented.

Building Information Systems (BIM) ensure coordination and communication between different disciplines. The increase in using building information systems at different stages of architectural projects resulted in emergence of more developed BIM models. BIS can meet the need of being in cohesion in issues like design, project, planning, marketing, resource management, information sharing and administration.

Together with the developing technology, there is a transition from traditional hand-drawn design to computer-aided design (CAD). The main structure of CAD relies on the basis of Interactive Computer Graphics (ICG) systems. Today, a new design system called Building Information Modeling has been developed in order to overcome the malfunctions in complex projects drawn by CAD system.

System Information Modelling is also known as Building Information Modelling and usually used with its abbreviation BIM (throughout the thesis BIM, its abbreviation will be used). In fact, “Building Information Modelling and Management” might be a better description for it as there is also management part in the system.

BIM provides model analysis where products are created three dimensional rather than two. It is a system which enables sharing of information and supports cooperation between project participants. It is described as an information source that subsists all through out a project (during stages of planning, design, construction and demolition). Thanks to the cooperation it provides when it is used
effectively, returning profit in terms of time and cost and decreasing error rate. BIM is developed in order to carry out those demands and requisites with the help of technology. At the end of this thesis, “G Villa” housing project is designed through Revit programme using BIM features.

Key Words: BIM, Building Information Modeling, REVIT, Infrastructure Systems
1. GİRİŞ

Şantiye süreci ise farklı aşamalarda verilerin toplanması ve bilgilerin geliştirilmesini içermektedir. Bu veri ve bilgiler, tasarım ile ilgili karar alma, yüksek kaliteli inşaat belgelerinin üretimi, performans tahminleri, maliyet tahminleri, inşaat planlaması, kullanım/banın yönetilmesi ve işletilmesi için kullanılan maliyet, iş takvimi, yapım, bakım, enerji ve üç boyutlu modelleri içermektedir.

1.1. Çalışmanın Amacı

Çalışmanın amacı, geleneksel bilgisayar destekli programlardaki tasarım aşamalarında görülen eksikliklerin tespit edilmesi, BIM’ın sağladığı faydaların mimarlık uygulamasındaki yansıtımlarının değerlendirilmesidir. Ayrıca BIM’ın yapı sektörü üzerindeki etkilerini; temel tasarımın karar verilmesi, detayların oluşturulmasını, inşaat planlamasına kadar; alışlageldik süreçlerin incelenmesidir. Sunduğu imkanlar neticesinde tasarımçılara, mühendislere, mal sahiplerine çok çeşitli denetleme ve düzenlemeye araçlarıyla, kesin öngörüye sahip bir biçimde süreci işleme imkanının sunduğunun gösterilmesidir.

Bu tez çalışmanın son bölümünde, BIM sürecinin etkin bir şekilde sürdürülebilmesi, katılımcıların taleplerinin gerçekleştirilmesi ve projenin öngörülen başarı ile sonuçlanabilirilmiş için BIM formatına uygun konut projesi hazırlayip alt sistem entegrasyonunun gösterilmesi hedeflenmiştir.

1.2. Çalışmanın Kapsamı

Çalışmanın birinci bölümünde giriş, amaç ve kapsam anlatılmaktadır.

İkinci bölümde BIM’in tanıımı, yapıları, unsurları, tarihsel gelişim sürecine değinilmiştir. Geleneksel yöntemlerden Bilgisayar destekli tasarım araçlarına geçiş aşamaları, kullanımlarına göre gruplandırılması, mesleki anlamda yarattığı etkiler ve ortaya çıkardığı yeni İmkânlar, BIM’in yararları ve zorlukları anlatılmıştır. BIM’in sektör içerisindeki mevcut durumunun ne olduğu, ülkeler arası BIM kullanım oranlarının ne düzeyde olduğu, kullanımı destekleme için kamu ve özel kurumların hangi çalışmaları yürütütmüğünun değerlendirilmesi yapılmıştır.
Üçüncü bölümde, Türkiye’ deki inşaat firmalarının Prota şirketi aracılığıyla BIM ile yaptıkları çalışmalara değinilmiştir.

Dördüncü bölümde ise Autodesk Revit ana platform üzerinden örnek bir “G Villa” konut projesi hazırlanmıştır. Bu modelde; altıapı, statik-mukavemet bilgileri, üstapı, içapı vb gibi tüm sistemlerin oluşturulması ön hazırlık çalışması niteliğindedir.
2. BIM NEDİR?

Yapı sektöründeki farklı disiplinlerde; ortak çalışma alanındaki iletişim zorlukları, küçük hataların büyük tehlikelere dönüşmesi ve maddi, manevi zararların meydana gelmesine sebep olur. Bu sorunlardan dolayı, sürekli gelişim, sistem kontrolü ve yönetim işleyışı üzerindenki düzenlemeler kaçınılmaz olmaktadır.

Çalışmanın bu bölümünde çözümü yönelik en yeni yöntemlerden biri olan, disiplinler arası çalışma koşullarına göre oluşturulmuş, meydana gelebilecek sorunları önceden görme yetisi veren ve bu anlamda çözüm katkıda bulunan BIM sistemleri incelenmiştir.

2.1. BIM’e Genel Bakış

Geleneksel yöntemlerin ve bilgisayar destekli tasarım araçlarının eksikliklerinin giderilmesi günümüzde BIM kavramının ön çıkmasına neden olmuştur.

BIM, temel anlamda entegre tasarım ve proje teslim süreçlerini destekleyebilen ve mevcut bilgi teknolojileri ile karşılaştırıldığında belirgin avantajlar sunan bir teknoloji, metodoloji ve süreçler bütünü olarak algılanmaktadır (Kymmell 2008; Clayton vd. 2009).

BIM, bilgisayar destekli bir tasarım aracı değil, yeni ve kapsamlı bilgiye dayalı yapıp sürecidir (Shourangiz ve diğ, 2011). Yalnızca bir veri saklayıcı olmanın ötesinde nesne tabanlı bir tasarım anlayışı sunmaktadır. Bu nesne tabanlı sistem, duvar, kolon, kapı, pencere gibi bina elemanlarının gerçek görev ve davranışları ile model üzerinde yer almışa olanak sağlama ve bunların birbirleri ile ilişkilendirilmelerini mümkün kılmaktadır (Babič ve diğ, 2010). Modelin tüm verileri ile oluşturulmasına olanak sağlaması nedeniyle, ihtiyaç duyulan metrajlar, maliyet analizleri veya gerekli diğer dokümanları oluşturarak tüm aşamalarda projenin kontrolünü kolaylaştırmamaktadır.

![Şekil 2. 1. BIM' in Farklı Evrelerde Farklı Paydaşlar Tarafından Kullanılması [58]](image)

Şekilde görüldüğü üzere üç boyutlu model; planlama, tasarım, projelendirilme, yapım ve işletme gibi projenin tüm yaşam döngüsünü içeren süreçlerinde kullanılmaktadır. Alt yüklenicilerin aynı modelli kullanabilmeleri temsile tutarlılığı arttırmakta, revizyon kolaylığı sağlamaktadır. Ayrıca veri dönüştürme işlevlerini,

2.2 BIM’ in Tarihsel Gelişim Süreci

Tasarım ve üretim mühendisliğinde bilgisayar kullanımı, 1946’da ENIAC (Electronical Numerical Integrator and Computer) ortaya çıkmasına kadar dayanabilir.

1950’li yılların sonundan itibaren Bilgisayar Destekli Tasarım terimi kullanılmaya başlanmıştır.

Akademik düzeyde ilk CAD sistemi 1963 yılında Masachusetts Institute of Technology (MIT) üniversitesinde yapılan bir doktora tezi ile ortaya çıkmıştır (Aydoğan, 2006). Aynı dönemlerde ise Ivan Sutherland tarafından geliştirilen “Sketchpad” programı bugünkü sistemlerin de temeli olan fikirlerin ilk uygulamalarından sayılabilir. (Ferrante vd., 1991)

Şekil 2. Ivan Sutherland’ın Sketchpad Uygulaması [32]

İlk BIM modellerinden bazıları; İngiliz Ulusal Sağlık Örgütü “Her Majesty’s Health Service” tarafından finanse edilen, Cambridge Uygulamalı Araştırmalar’ın OXSYS CAD’ı, CEDAR ve HARNESS hastane tasarım sistemleridir.

ABD’deki ilk önemli çalışmalarından bazıları ise; Techcrete, ARCH-MODEL, BDS, GLIDE ve GLIDE-II’dir.

- Techcrete prekast beton yapı sistemi, Carl Koch ve çalışanları tarafından geliştirilen, tasarımını destekleyen bir bina modelidir.

- Michigan Üniversitesi tarafından geliştirilen ARCH-MODEL isimli çalışma, yıllar içerisinde sürekli geliştirilerek birçok sürümü çıkarılmış ve Macintosh uyumlu bir BDT sistemine dönüştürtür. Bu çalışma, geometriye bağlı bir kati modellleme sistemi ve geometrik olmayan verileri saklayan ilişkisel bir veritabanına bağlı olarak çalışmaktadır.

ve dokulu şekilde görme imkanı sağlamaları kullanımlarının hızla artmasına neden olmuştur.

1990’ların başlarında grafiksel analizleri ve simülasyonları bütünleştirecek, farklı koşullar altında binanın uyumunu, geometrisini, malzeme özelliklerini ve sistemlerini de içerecek şekilde, binanın nasıl davranışacağı hakkında bilgi sağlamak için yazılımlar geliştirilmiştir. (Barnes ve Davies, 2014) Bu yazılımların geliştirilmesiyle beraber BIM’in gelişmesinin önünde yer alan teknolojik engeller ortadan kalkmaya başlamıştır.

<table>
<thead>
<tr>
<th>CAD</th>
<th>BIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D/ 3D</td>
<td>3D/ 4D/ 5D/ XD</td>
</tr>
<tr>
<td>Değişiklik yapmak zor</td>
<td>Değişiklik yapmak kolay</td>
</tr>
<tr>
<td>Baskı</td>
<td>Elektronik</td>
</tr>
<tr>
<td>Elle yapılan</td>
<td>Otomatik</td>
</tr>
<tr>
<td>Yavaş</td>
<td>Hızlı</td>
</tr>
<tr>
<td>Analog</td>
<td>Sayısal</td>
</tr>
<tr>
<td>Bağlantısız</td>
<td>Bütünleşik</td>
</tr>
</tbody>
</table>

Tablo 2.1. Geleneksel Çizim Tekniği (CAD) İle BIM Karşılaştırması [57]

Şekil 2.4. Revit Araç Çubuğundaki Yapı Elemanları [32]

BIM ilk olarak 2002’de Jerry Laiserin tarafından tanıtılmış (Miettinen ve Paavola, 2014). Yazılımların geliştirilmesi, BIM’in büyümesine katkıda bulunmuş ve sonuç
olarak, son birkaç yılda daha çok maliyet, enerji ve başka boyutları içeren modeller geliştirilmişti (Barnes ve Davies, 2014).

Şekil 2. 5. BIM ve 2D CAD ile Projelerin Gelişim Süreçlerinin Karşılaştırılması [42]

Gelişen teknolojiyle beraber tasarımçıların tasarım bilgileri ve verilerini çeşitli şekilde yönetebilecekleri çağdaş CAD sistemleri, çizim masalarından sayısal karmaşık araçlara doğru evrim geçirmiştir. (Epstein, 2012)

Son olarak, BIM sistemleri, sağladığı avantajlar nedeniyle sektörde kabul edilebilir hale gelmiştir. Şekilde görüldüğü üzere bilgisayar destekli tasarım araçları için performans-gelişmişlik düzeyi ilişkisinin grafiksel gösterimi verilmiştir.

Şekil 2. 6. Bilgisayar Destekli Tasarım Araçlarının Performans- Gelişmişlik Düzeylerinin Grafiksel Gösterimi [33]

2.3. Ülkelerin BIM Yaklaşıımı

Birçok ülkede konsept, tasarım, yapım ve işletme süreçlerinde BIM kullanım alanı genişlemektedir. BIM teknolojisinin erken uygulayıcılar Kuzey Amerika’nın haricinde Finlandiya, Norveç ve Danimarka olarak kabul edilmektedir. Asya kitasında ise kamu sektöründe Singapur öncü uygulayıcıdan olurken Hong Kong’da hem özel hem de kamu sektöründe uygulanmaktadır (Wong ve diğ, 2010).

BIM’in bugün en yaygın kullanıldığı ülke ABD’dir. Maddi imkanları, teknolojik alt yapısı ve endüstriyel BIM’in geliştirilmesinde önemli bir role sahiptir. Özellikle Kuzey Amerika ve Avrupa devletlerinin teşvikleriyle ve yazılım firmalarının destekleri
mimarlık ve İnşaat sektörüne son derece hızlı bir şekilde benimsenmektedir. (Eastman, 2008)

Şekil 2. 7. Kuzey Amerika’da BIM’e Adaptasyon [59]

2.4. Kamu ya da Özel Kuruluşların Gerçeklestirdiği BIM Düzenlemeleri

İngiltere’de 2011 Mayıs ayında Kabine İşleri tarafından Devlet Yapım Stratejisi yayınladı. İlk defa devlet tarafından 2016 itibariyle bütün merkezi devlet böümlerinin projelerinde en azından ikinci seviye de BIM uygulanması zorunluluğu getirmiş ve birkaç BIM standardı yayınlanmış (Bolpagni, 2013).

2002 yılında Danimarka hükümetinin ilan ettiği olduğu gelişim paketinin konularından biri Bilgi ve İletişim Teknolojilerinin kullanımıyla Inşaat sektörünün üretim ve rekabetçiliğini artırılmasıydı. 1 Ocak 2007 itibariyle kamu projelerinin Bilgi ve İletişim Teknolojilerine ilişkin birkaç talebi yerine getirmesini zorunlu yendi.

Finlandiya'nın BIM tanınan süreçlerle ilgili uzun bir tecrübesi bulunmaktadır. BIM gelişimine katkıda bulunan özel ve kamu kurumları Senate Properties, Skanska Oy, Tekes, Association of Finnish Contractors ve VTT'dir (Wong ve diğ, 2010).

Hollanda İçişleri Bakanlığı ve Kraliyet İlişkileri Rijksgebouwendienst tarafından 2012'de BIM adaptasyonunu zorunlu kılmış ve BIM Standardının birinci versiyonunu, 2013’de ise ikinci versiyonunu yayınlanmıştır (Bolpagni, 2013).

Güney Kore’de Kamu İhale Hizmeti tarafından 2016 itibariyle bütçesi belirlenir bir miktar üzerinden alınan bütün kamu projeleri için BIM zorunluluğu getirilmiş ve 2010 yılında Mimari BIM rehber dokümanını yayınlamıştır (Bolpagni, 2013).

Hong Kong İmam İskân Müdürlüğü 2006 yılından itibaren pilot BIM projeleri gerçekleştirmiş ve ayrıca birçok BIM dokümanını yayınlamıştır. 2014 itibariyle bütün yeni projeler için talep etmektedir (Bolpagni, 2013). The Works Branch of the Development Bureau (DevB), The Housing Authority of the Government of the HKSAR ve The Hong Kong Institute of Building Information Modeling kuruluşları Hong Kong’da BIM gelişimine katkıda bulunan kuruluşlardır (Wong ve diğ, 2010).

Yeni Zelanda 2012 yılında, yapım sektöründeki temel şartname sistemi kuruluşu tarafından BIM gelişimini tanımlamak için Ulusal BIM Anketi yayınlanmıştır (Bolpagni, 2013).

Estonya, İsveç ve Almanya'da BIM ile ilgili bazı çalışmaları yapılmakta ve dokümanlar geliştirilmekteyken; Çin, İrlanda, Tayvan ve İtalya da ise BIM ile ilgili hiçbir zorunluluk bulunmaktadır (Bolpagni, 2013).

Türkiye'de ise durumun farklı olmadığı BIM kullanım zorunluluğunun olmaması ve kamu kuruluşları tarafından yapılmış herhangi bir çalışma olmadığı görülmektedir.

2.5. Eğitim Kurumlarının Gerçekeşirildiği BIM Düzenlemeleri

Eğitim kurumlarının BIM'e gösterdiği ilginin ülke içerisindeki BIM gelişimine de katkıda bulunacağı söylenebilir. Bu yüzden tasarımcılar, akademik kurumlardan eğitim alırken BIM konseptini anlaması ve farkındalığı da önemlidir (Barison ve Santos, 2010b).

Danimarka'da BIM araştırma ve geliştirme alanında Aalborg University IFC Model sunucuları ve üç boyutlu modelleme, Aarhus School of Architecture ürün biçimlendirmesi, tasarım amacını ve IFC model sunucularına ve Technical University of Denmark ise birlikte çalışabilirlüğe odaklanmaktadır.

Finlandiya'da Helsinki University of Technology, Tampere University of Technology BIM hakkında araştırma ve geliştirme çalışmaları yürütülmektedir (Wong ve diğ, 2010). 2009 yılında Associate Schools of Construction (ASC) üyesi kirkbeş adet eğitim kurumunda yapılan anket sonucunda yalnızca bir kurumun bağımsız BIM dersi verdiği, diğer kurumlarda ise başka derslerin ders programlarının %9'unda yer aldığı sonucu elde edilmiştir. 2011 yılında yapılan başka bir araştırma sonucunda ise mühendislik programlarının %36'sının, yapım yönetimi programlarının ise %57'sinin hala BIM dersleri sunmadıkları da ortaya koymuştur. (Lee ve diğerlerin atıfta bulunduğu gibi, 2013).

2.6. BIM'in Düzenlemleri

2008 yılında Mervyn Richards ve Mark Bew tarafından hazırlanan BIM Olgunluk Diyagramı'nda, BIM'in düzeyleri gösterilmiştir (Richards, 2010; Sinclair, 2012; BSRIA Topic Guides, 2012). Şekil 2.8'de BIM olgunluk diyagramında BIM Düzeyleri 0, 1, 2, 3 olarak 4 aşamaya ayrılmıştır.
Düzey 0
Yapım bilgisisini içeren iki boyutlu CAD çizim dosyalarıdır. Bu süreçte tasarımın büyük çoğunluğunun yapıldığı alanıdır. Diyagramdan görülecek en önemli nokta CAD ile ilgili genel standartlar ve süreçlerin olmamasıdır (Richards, 2010).

Düzey 1
Bu düzeyde ise 2 boyutlu ve 3 boyutlu proje dosyalarını kapsamaktadır. Mimarlar bu süreçte 3 boyutlu tasarım programı projenin ilk aşamasından itibaren kullanılmaktadır. Tasarım ve tasarım sonrası projenin görselleştirilmesinde Autodesk, Revit vb. programlardan faydalanılmaktadır. BIM proje taraflarından biri tarafından kullanılmakta, ortak çalışma olmamaktadır.

Düzey 2
Tüm proje ekip üyelerini bütünleşik olarak üç boyutlu modelin üretim aşamasında bulunmaktadır. Bu düzey birlikte çalışmanın olduğunu gösterir. Farklı süreç ve disiplinlerdeki tasarımcıların aynı model etrafında yer almasalar bile zaman içerisinde birbirleriyle bağlantılıların kurulmuş olması gerekmektedir.

Düzey 3
Bu düzey en gelişmiş BIM düzeyidir. BIM düzeyleri arasında en belirgin aşama düzey 2 ile düzey 3 arasındadır. Ayni proje üzerinde tüm proje katılımcılarının koordineli bir şekilde çalışmasının gerekli olduğu düzeydir. Düzey 3 Maddeler halinde sıralarsak, BIM modeli ile aşağıdaki işlemler yapılabilimekteidir:

• Kavramsal tasarım öncesi ve sırasında ihtiyaç planlamaları,
• Kavramsal tasarımında özgün formlar araştırma imkanı,
• Sürdürülebilir tasarm desteği,
• Doğru ve detaylı tasarım ve projelendirme,
• Bina performansından strüktür analizlerine ve ısıtma soğutma hesaplamalarından akustik analizlere kadar birçok konuda analiz imkanı,
• Güncel, koordineli ve eksiksiz 2 boyutlu dokümantasyon,
• 3 boyutlu iç - dış görselleştirme ve animasyon,
• Yapı elemanları ve sistemler için ön imalat (pre-fabrication) desteği,
• 3 boyutlu koordinasyon,
• 4 boyutlu iş ve saha planlamaları,
• 5 boyutlu yapı maliyeti tahminleri,
• Saha lojistiği simülasyon ve planlamaları,
• Yapının işletilmesi ve yönetiminde kullanım,
• Bakım, onarım ve yenileme çalışmalarında kullanım,
• Veritabanının kurumsal kaynak planlaması, tedarik zinciri yönetimi, ve işletme ve bakım işleri ve yazılımları için kullanılabilmesi,
• Yıkım planlaması (Eastman ve diğ., 2011).

Şekil 2. 9. Düzey 3 teki BIM Modeli [50]

2.8. BIM Tabanlı Tasarım Araçları

Autodesk Revit, Bentley Microstation, DDS-CAD, Graphisoft Archicad, IDEA Architectural, Nemetschek Allplan, Tekla Structures, VectorWorks Architect yazılımlar, inşaat sektöründe çeşitli aşamalarda ve konularda tasarımcılar, mimarlar, inşaat mühendisleri, proje koordinatörleri, proje yöneticileri ve mal sahiplerinin daha doğru karar ve çözümler bulmasına yardımcı olmaktadır.

Bu veriler temel alınarak, BIM süreci içerisinde yaygın olarak kullanılan model tasarım yazılımlarının Autodesk, Bentley ve Nemetschek firmalarına ait olduğunu söyleyebiliriz.

2.8.1. Autodesk Revit Architecture

1982 yılında ABD’de kurulan ve endüstriyel amaçlı yazılımlarla tanınan Autodesk firmasının yapı endüstrisi için kullanılabileceği model tasarım yazılımları Autodesk, Bentley ve Nemetschek firmalarına ait olduğunu söyleyebiliriz.

Bu yazılım; serbest formlardan yapı modelleme ve kavramsal tasarım desteği ile hızlı ve kolay geometri yaratımı destekler. Karmasık formların oluşturulması ve yapı modeline dönüştürülmesi için yerleşik araçlar barındırır. Sınırlama, parametre atayabilme fonksiyonları sayesinde yüksek kontrol imkânı sağlayabilmektedir. Gerek tasarım aşamasında, gerekse son ürünün analizi için çeşitli araçlara sahiptir.
Şekil 2. 10. Revit Yazılımının Kullanıcı Arayüzü [52]

Farklı uygulamalardan (AutoCAD, Autodesk Maya, Sketchup, AutoDesSys form Z, McNeel Rhinocero ve diğer ACIS veya NURBS tabanlı uygulamalar) nesnelerin Revit’e taşınması ve bu ortamda geliştirilmesi de mümkündür. Ayrıca yapı endüstrisinde de en yaygın kullanılan yazılım olan AutoCAD'le uyumlulu olarak çalışır. Projenin ve paftalarının iki yazılım arasındaki alışverişini destekler. Revit Architecture'de, her iki veya üç boyutlu görünüş, her metraj listesi aynı bina veri tabanının farklı yansımlarıdır.

Kullanıcı alışık olduğu görünüşlerde çalışırken, Revit Architecture, bina için gerekli olan tüm veriyi toplar, BIM içerisinde saklar ve projenin diğer tüm gösterimlerine yansıtır. Projenin herhangi bir bölümünde yapılan değişiklik anında tüm paftalara ve listelere yansıtlılır.

Autodesk Revit Architecture’un bazı özellikleri:

- Yapıyi oluşturan nesneler parametrik tabanlıdır.
- Kullanıcı tarafından özelleştirilebilirler.
- Kavramsal tasarım, kolay geometri yaratımı, sınırlama ilişkileri ve parametreler atayabilme gibi özellikler ile yüksek seviyede kontrol ve hassaslık sağlar.
- Yazılım geliştirme arayüzü ile ileri modelleme teknikleri ve araçları geliştirilabilir. Karmaşık formüllerle yaratılacak eğrilerin kullanıldığı formlar bu formüllerde yapılacak değişiklikler ile kontrol edilebilir ve geometriler yazılım desteği ile yaratılabilir.
- Sağladığı araçlar sayesinde üreticiler, kendi ürünlerini yaratıp mimarlar, mühendisler ve tasarımçılarnın kullanımına sunabilirler.
- Katı modelleme araçlarıyla kütle çalışması yapılabilir.
- Günışığı ve yapay ışık çalışmalarını yapılabilir.
- Revit modelleri, DWG formatında aktarılıp ve görselleştirme çalışmaları Autodesk VIZ içerisinde yapılabilir.
- Revit Architecture'un BIM deki veriler, maliyet, planlama, vb. işler için ODBC (Open Database Connectivity) veritabanlarına aktarılabilir.

2.8.2. Graphisoft ArchiCAD

Diğer BIM yazılımları gibi ArchiCAD de bina hakkındaki bütün bilgileri merkezi bir veri tabanında depolar; bir görünüşte yapılan bütün değişiklikler kat planları, kesitler, cepheleri, 3 boyutlu modeller ve malzeme listelerine kadar her şey aktarılır.

Şekil 2.11’te ArchiCAD yazılımının kullanıcı arayüzü görülmektedir.

Şekil 2.11. ArchiCAD Arayüzü [12]

ArchiCAD’in bazı özellikleri:
- Mekân içerisinde sanal gezi yapabilme imkânı sunarak, gün içerisinde istenilen zamanlarda güneş ışığının odayı nasıl etkilediği görülebilir.
- Binayı oluşturan tüm elementleri takip eden bir 3 boyutlu dijital veritabanı kullanarak, yüzey alanı ve hacmini; ısıyla ilgili olasılıkları; oda tanımlarını; fiyatları; özel ürün bilgilerini; cam, kapı ve bitirme planlarını bilgisi işlenebilir kılara.
- Uzman bilgisi gerektirmeden sunum araçlarında faydalanabilir ve sanal gerçeklik sunumları ve animasyonları doğrudan ArchiCAD’de üretilabilir.
- İnşaat için gerekli belgeleri ve dosyaları otomatik olarak veri tabanından elde edilebilir.
- Etkileşimli eleman programları ve malzeme listesi üretilip ve bunlar her

- Veri tabanındaki tüm değişimler otomatik olarak sayfa düzeninde güncellenmiş olup bu bağlantı belgenin bütünlüğünü sağlar.
- Mimari uygulamalar ve MEP (Mechanical, Eletrical and Plumbing - Mekanik, Elektrik ve Tesisat) Modelleyicisini 3 boyutlu MEP ağları (kanal sistemi, boru tesisatı ve kablo tavanları) yaratmak, düzenlemek, akırmak için kullanabilir ve koordine edebilirler.
- IFC veya doğal dosya formatı aracılığıyla şahip olan iki yönlü giriş ve çıkış kapasitesiyle mimar ve yapı mühendislerinin aynı veri tabanı modelini kullanmasına imkan verir. Aynı modelde tasarlanmış bir yapı, gerçekleştirilmiş değişiklikleri otomatik olarak yansıttığı gibi gerilim analizlerinde de kullanabilir.
- Artlantis Render/Studio, Google Sketchup, Cinema 4D ve AutoCAD ile dosya alışverişlerine sahip olunan iki yönlü giriş ve çıkış kapasitesiyle mimar ve yapı mühendislerinin aynı veri tabanı modelini kullanmasına imkan verir. Aynı modelde tasarlanmış bir yapı, gerçekleştirilmiş değişiklikleri otomatik olarak yansıttığı gibi gerilim analizlerinde de kullanabilir.
- Tüm endüstride bilgi paylaşım taahhüdü IFC sayesinde başka yazılımları kullanabilen diğer uzmanlarla ArchiCAD'de çalışabilir.

2.8.3 Nemetschek Allpan

Bu program obje temelli bir parametrik sistem olup model oluşturarak çalışılır. Çizim 2D ve 3D hallerini birlikte görebilme ve değişirebilme, çalışma sırasında eş zamanlı geri besleme sağlayarak tasarım süreçlerine katkıda bulunur. Konsept tasarımından metraj kadar çeşitli olanaklar sunar. Allplan kullanıcı arayüzü Şekil 2.12'te görülmektedir.

Şekil 2.12. Allplan Arayüzü [53]
Allplan'in bazı özellikleri:

- Çizim araçları akıllı yakalama modları, 2 boyutlu geometrik çizim ve düzenleme komutları ve 3 boyutlu dönüştürmesi için yöntemler sunmaktadır. Ayrıca akıllı ölçülendirme ve taramaları, tasarımındaki değişikliklere otomatik olarak uyum sağlar.
- DWG, DXF, IFC ve PDF gibi dosya uzantılıyla veri alışverişi destekler. 3 boyutlu PDF gönderip alma özelliği sayesinde projenin tamamının veya iç dekorasyonun başkaları tarafından incelenmesi için gönderilmesi mümkün. Bu özelliği ile gerçek zamanlı olarak projede gezilebilmesine olanak tanır.
- Friedrich + Lochner (donatı çizimi alınması için) ve ESA PT (SCIA uygulaması ile karşılık çalışabilme özelliği için) arayüz ortamları içeren yerleşim elemanları tanımlamak ve yerleştirmek, akıllı uyarlamalar ile yerleştirilen bu elemanlarla ilgili metrajlar almak, yerleştirilme alanlarını yeniden tanımlamak ve alanlarda yeni elemanlar eklemek gibi pek çok farklı amaç için kullanılabilir. Özellikle, zeminlerde veya cephelerde içeren parkeler, seramikler, granitler gibi malzemelerle ilgili adet, alan, fiyat, kırılan parça boyutları gibi bilgilerin alınması için oldukça kullanıcı bir modül.
- Gölgelendirme modülüyle 3B modellerin sunumlarına yönelik olarak, ışık kaynağından gelen aydınlatmaların hesap edilmesi ile renkli sunum oluşturulmasına yönelik araçlar içerir. Enlem, boylam veya Türkiye'deki ilçenin ismiyle zaman belirtilerek gün ışığı canlandırması da yapılarak gün ışığı etütlerine imkân tanımlar.
- Allplan ile mimari ailedeki modüller kullanılarak oluşturulacak akıllı yerleşim elemanları tanımlamak ve yerleştirme, akıllı uyarlamada yerleştirilen bu elemanlarla ilgili metrajlar almak, yerleştirilme alanlarını yeniden tanımlamak ve alanlarda yeni elemanlar eklemek gibi pek çok farklı amaç için kullanılabilir. Özellikle, zeminlerde veya cephelerde içeren parkeler, seramikler, granitler gibi malzemelerle ilgili adet, alan, fiyat, kırılan parça boyutları gibi bilgilerin alınması için oldukça kullanıcı bir modül.
- İlişkili Görüntüler modülüyle planda, cephede, kesitte veya perspektifte yapılan herhangi bir model değişikliğinin, bütün bu görüntüleri otomatik olarak yansıtılar.
- Raporların metraj bilgileri, maliyet tahminleri ve özellikleri içerecek şekilde oluşturulması sağlanır. Metrajlar ve grafik sunumu tablolar otomatik olarak oluşturulur ve maliyet hesaplamaları için direkt Microsoft Excel’e gönderilir.

2.9. BIM Tabanlı Yazılımların Getirdiği Yenilikler

BIM tabanlı yazılımın getirdiği yeniliklerin başlıkları bu bölümde ele alınmıştır.

2.9.1. Alt Yapı Sistemi Entegrasyon Tespiti

Çalışma tespiti; inşaat alanında imalatların yapım sırası gözetilmeden birbirini engellemesi olarak tanımlanabilir. CAD ile çizilmiş projelerde alt yapı sistem entegrasyonunun yapılması zor olduğundan BIM'in gelişmesinde en önemli etken olmuştur.

Elektrik, mekanik, statik ve mimari projelerin yapım öncesinde entegre edilmesi, elemanların çalışma tespitlerinin önceden belirlenip, zaman, maliyet ve işçilik tasarrufunun sağlanabilmesi BIM'in tercih sebeplerinden biridir.

Şekil 2.13. Revit Çalışmasıyla Yapılan GMW İstanbul Medine Hızlı Tren İstasyon Projesi Mimari, Mekanik ve Statik Projeler Arası Çakışma Tespiti [24]

2.9.2. Birlikte Çalışabilirlik

Tasarımın bir ekip işi olması ve seçilen yazılımın bütün disiplinlerin iletişimini sağlayan bir yapıda olması projeye büyük kolaylıklar sağlamıştır. Yazılımda tüm strüktürün en ince detayına kadar görülüp çözülebilmesi, onlarca dosyaya girip çıkılmaktan kurtarmaktadır.

BIM'in en büyük katkılarından biri de mevcut proje dosyası üzerinde farklı disiplinlerde olan kişilerin aynı anda çalışabilmesidir. CAD le yapılan projelerde bir dosya üzerinde aynı anda bir kullanıcı çalışabilirmekte, diğer kullanıcılar "read-only"(salt okunur) çalışabilmekte veya dosyayı farklı kaydederek çalışabilmektedir.
2.9.3. Tasarım Sürecindeki Değişikliklerin Yönetimi

Tasarım sürecinde alınan kararlarda yapılan değişikliklerin başka hangi kararları ve yapı elemanlarını etkileyeceğini belirlemek son derece önemlidir. (Pektaş ve Pultar, 2006). BIM, yapı elemanlarının birbirine ilişkilerini de modelleyebildikleri için tasarım sürecindeki değişikliklerin yönetimi için umut vaadetmektedir.

Şekil 2.15. görüldüğü üzere BIM de çok sayıda kullanıcı aynı anda çalışabilmektedir. Zaman ve emek kazancının ötesinde, binayı daha doğru kavrayabilmek ve çözebilmek için daha fazla öğe aynı anda oluşturulmakta ve ortaya daha doğru bir ürün çıkmaktadır. Burada, projenin ölçeğine bağlı olarak, doğru işbölümünün yapılması ve farklı disiplinlerin aynı modelde sorunsuz çalışabileceği bir altyapının kurulabilmesi önemlidir. BDT sayesinde tasarım maliyetlerini düşürmek, tasarım sürecini hızlandırmak ve kaliteyi artırmak gibi pek çok faydaları olacaktır.

Şekil 2.15. BIM'ın Bilgi Akışı [41]
2.9.4. Projelendirme Kolaylıkları

Şekil 2. 16. Yapı Modelinin Kesit, 3D ve Pozlama [54]

2.9.5. Akıllı Nesnelerin Varlığı

Objeler; tasarım, bina şartnamesi ve farklı koşullar çerçevesinde programlanabilir. Bu kurallar çerçevesinde, objeler akıllı ve kendilerinin ne olduğunu bilerek nasıl bir davranış içinde olacaklarını ve diğer objelerle nasıl bir ilişki içinde hareket edeceklerini bilmelerini sağlar.

Örneğin tasarımını yükseklik, kalınlık ve malzeme özelliklerini tanımladığı bir duvar yaratabilir. Tasarlanan duvar tipine yapılan ilave ve değişiklikler, üzerinde yer alan objelerin yeni duruma karşılık veremelerine neden olur. Örneğin; tasarlanan duvar hareket ettirildiğinde pencere ve kapı da onunla birlikte hareket edecek. Üzerindeki nesneleri tekrar taşımaya gerek olmayacaktır. Gerçek dünyadaki nesnelerin özelliklerini taşırlar.
Şekil 2.17. Revit Bir Kapı Nesnesine Ait Nitelikleri [25]

Akıllı nesnelerin bir diğer özelliği ise tasarımının gözünden kaçabilecek durumlarda yardımcı olabilir. Örneğin; tasarımçı merdivenin rıht yüksekliği ve basamak genişliği ergonomik olmayan bir aralığın dışına çıkıldığında program tarafından uyanıyor.

Şekil 2.18. Girilen Merdiven Rıht Değeri İçin Hata Mesaji [42]

2.9.6. Parametrik Nesneler

Şekil 2. 19. Pencere Nesnesi Üzerinde Parametrik Modelleme [42]

2.9.7. Tasarım Bilgisinin Yeniden Kullanımı

Tasarım sürecinde CAD ile çizilen projelerde bilgilerin kaydı tutulmamakta ayrıca bu bilgiler bir sonraki benzer projede kişisel çabalar sayesinde yeniden kullanılabilmektedir.

BIM ile üretilen bilgi, üretildiği anda saklanmayı ve diğer uygulamalarda tekrar kullanılmayı amaçlar. Tasarım bilgisinin çeşitliliği ve değişkenliği düşünüldüğünde bu bilginin saklanıp yeniden kullanılmasının önemi daha iyi anlaşılabilir.

Şekil 2. 20. Metraj Listesi [33]
2.10. BIM’ın Yapım Projelerindeki Kullanım Alanları

BIM’in getirdiği yenilikler sayesinde kullanım alanları da çeşitlilik göstermektedir (Forbes, 2010; Azhar, 2011.) Bunların başlıkları ise;

Çevreselleştirme: Üç boyutlu görüntü alınabilme (3D render) özelliği sayesinde kolaylıkla istenilen görüntü elde edilebilir.

Üretim Çizimleri: Yapı sistemleri için işyeri çizimlerini oluşturmak kolaydır. Örneğin, model tamamladıktan sonra metal levha boru tesisatı çizimleri kolayca oluşturulabilir.

Otomatik Üretim: BIM dosyalarından elde edilen veriler sayesinde sayısal kontrollü imalat malzemelerine girdi olarak kullanılabilir.

Yönetmelige ilişkin değerlendiriciler: İtfaiye ve diğer yetkililer tasarılan modelin kendileri ile ilgili kısımlarını gözden geçirmeleri için kullanılabilir.

Potansiyel analiz: Potansiyel hatalar, sıfırma ve tahliye kaçakları gibi hatalar kolaylıkla tespit edilebilir.

Tesis Yönetimi: Tadilat, mekan planlama ve bakım onarım işlemleri için kullanılabilir.

Maliyet Hesabı: BIM içerisinde maliyet tahmini analizi yapmaya yarayan bir yazılım mevcuttur. Kullanılan malzeme miktarına ve türüne göre model üzerinde maliyet tahmini yapılabilir, gerekli güncellemeler yapıp değişen maliyetler bulunabilmektedir.

Yapımı sıralama: BIM ile malzeme siparişleri, üretim, tüm yapı bileşenlerinin teslim programlaması gibi koordinasyon gerektiren işlemler yapılabilir.

Anlaşmazlık, müdahale, çatışma belirlenmesi: BIM’de tasarlanan proje üç boyutlu olduğu için çakışma belirlenmesi (clash detection) işlemi otomatik olarak yapılır. Bu sayede elektrik, mekanik, mimari projelerde görülen çakışmalar otomatik olarak kontrol edilmektedir. Çakışmaya karşı önlem alınmış olmaktadır.

Revizyon olanağı: yapım projelerindeki hatalı olan veya değiştirilmek istenen kısımların yeniden tasarlanması olanağı vardır.

Şekil 2.21. BIM Süreçleri [55]
2.11. BIM'in Proje Ekibinin Görevleri

Proje ekip üyeleri:

Mimarlar; tasarımlarını daha efektif bir şekilde modellemek, gerekli dökümanları oluşturmak ve diğer ekip çalışanları için gerekli altyapıyı oluşturmada kullanırlar.

Tasarımcılar; render çizimlerini, animasyonlarını oluşturmak, görsellerini hızla alarak işveren ve diğer disiplinlerdeki proje çalışanları ile kullanırlar.

Mühendisler; statik mekanik, elektrişel ve çevresel tasarımlarını modelleyerek sistemin nasıl işleyeceğini değerlendirmeler.

Danışmanlar, mühendisler ve mimarlar fiziksel olarak modellenen yapıyı BIM kullanarak oluşturur, bilgiyle donatır, analiz eder, planlar ve test ederler (Hardin, 2009).

Şekil 2.22. Tasarım Sürecinde Ekip Çalışması [1]

2.12. Yapım Projesi Sürecinde BIM

Yapım projeleri; çok sayıda katılmıcının katkısını gerektiren (yükleniciler, alt yükleniciler, işveren, tasarımçı, danışmanlar, malzeme tedarikçileri gibi) projenin niteliğine, büyüklüğüne, bütçesine ve proje teslim sisteminine bağlı olarak farklı düzeylerde, karmaşık ve bir defaya mahsus özgün projelerdir. BIM ise yapının tasarımından yıkılmasına kadar tüm ömrü boyunca yararlanacak bir enformasyon kaynağıdır. Bu bölümde yapım proje süreç aşamalarında BIM kullanımı ve bu kullanım sonucu yarattığı etkiler anlatılmaktadır.

2.12.1. Tasarım Aşamasında BIM

Şekil 2.23 de oluşturuluran tasarım, proje katılımcılarının da anlayabileceği şekilde üç boyutlu ve gerçeğin bell bir oranda küçültülmüşü olarak çıktı alınabilir. Alt yüklenicilere yapılacak iş daha hızlı ve kolay anlatılabilir ve iş takibi daha kolay hale getirilmiş olmaktadır.

Tasarım aşamasında hesaplama gibi işler için kolaylık sağlayarak işleri otomatik hale getirmektedir. Bu sayede katların net ve brut alanları, hacimler, malzeme miktarları ve alan kullanımları hızla elde edilebilmektedir.

Sonuç olarak tüm maliyeti kolayca hesaplanabilir, veriler analizler için kullanılabilir. Ayrıca yapısal analizler, enerji performansı, akustik analizler, aydınlatma analizleri, termal analizler, yangın, ısıtma soğutma analizleri gibi birçoğun analiz BIM modeli kullanılarak yapılabilirmektedir (Reddy, 2011).

Şekil 2.24

BIM yazılımın karmaşık geometrik denklemeleri çözme ve büyük miktarlarda veri işleme yeteneği ile yapı elemanları arasındaki uzaysal çakışma ve problemleri tespit edilebilmektedir. Böylece inşaat sahada başlamadan önce olası sorunlar, tasarım sırasında ilgili müellif tarafından çözümlenebilir.

Şekil 2.23. BIM Modelinin Otomatik Kiriş Hesabı [36]

2.12.2. Yapım Aşamasında BIM

BIM ile çizilen projelerde; daha az iş tekrarı, daha az iş değişikliği, daha az sipariş değişikliği, tasarım hatalarının inşa öncesi tespiti ve daha az nitelikli işgücü ile sistem inşa yeteneği sağlanmaktadır.

Yükleniciler ve diğer proje katılımcıları, tasarımın erken aşamasında inşa ve imalat konuları ile ilgili bilgi alabilmesi ve tasarımın inşa edilebilir olduğundan emin olmaktadır. Kodlara uyum, fizibilite çalışmalar, doğru metraj, yapı kalitesi, inşaat tekni̇kleri ve saha planlaması daha doğru bir şekilde yapılabilirmektedir. Ayrıca BIM ile yapının inşa süresinde hedeflenen zaman planına uygun bir şekilde ilerlemesi sağlanabilmektedir.

Şekil 2.24 deki BIM yazılımın karmaşık geometrik denklemeleri çözme ve büyük miktarlarda veri işleme yeteneği ile yapı elemanları arasındaki uzaysal çakışma ve problemleri tespit edilebilmektedir. Böylece inşaat sahada başlamadan önce olası sorunlar, tasarım sırasında ilgili müellif tarafından çözümlenebilir.
Şekil 2.24. Revit 2D ve 3D Çizim [57]

2.12.3. Yapının kullanımı ve işletilmesi aşamasında BIM

2.13. BIM'in Bütünleşik proje sürecince rolü

Tasarım sürecince katılmaların fazla olduğu ve birbirleriyle olan yoğun ilişkileri bütünleşik proje sistemlerinin gelişmesine ve yaygınlaşmasına yol açmıştır.

Bütünleşik proje kişileri, sistemleri, iş yapım tekniplerini ve uygulamaları, tasarım, imalat ve yapıp aşamalarındaki kayıpları azaltarak optimum verim elde etmek için, tüm katılmaların yetenek ve sezilerini ortaklaşa kullanarak bir süreç içerisinde birleştirilen bir yaklaşım (AIA, 2007).

Ayrıca bütünleşik proje süreci ile anlatılmak istenen bir inşaat projesinin disiplinler arası tüm bölümlerin (altyapı, üstü yapı, elektrik, çevre vs.) hazırladığı projelerin bir arada birleştirilerek teslim edilmesidir. Ortak bir dil oluşturarak, tek bir proje halinde yapı projesinin detaylandırılmasıdır.

Örneğin toplu konut projesinde mimar, inşaat mühendisi, makine mühendisi, elektrik mühendisi, harita mühendis, mal sahibi, işletme hatta hukukçu, satıcı ve pazarlamacı projenin tasarım aşamasından tamamlanana kadar birlikte çalışmak, sorunlara makul ve ekonomik çözümler üretmek zorunludur.

Bütünleşik proje sürecinin temel ilkeleri:

- Bireysel saygı ve güven
 Projede işveren, tasarımcı, danışmanlar, yüklenici, altyükleniciler ve tedarikçiler birlikte çalışmanın değerini anılmış olup ve projenin en iyi şekilde sürmesi için uyumlu bir takım gibi çalışırlar.

- Bireysel fayda ve mükafat

- Ortak çalıştay dayalı yenilikler ve karar verme

- Anahtar katılımcıların projeye erken katılması

- Proje hedef tanımlamalarının erken yapılması
 Proje katılımcıları arasında açık, doğrudan, dürüst iletişim odaklıdır. Kısılere sorumluklar açıkça anlatılır.

- Yoğun planlama süreci
 Bu süreçte planlamaya ayrı bir önem verilmekte ve böylece daha verimli sonuçlar alınmaktadır.

- Açık iletişim
 Proje katılımcıları arasında açık, doğrudan, dürüst iletişim ve takım çalışması odaklıdır. Kişilere sorumlulukları açıkça anlatılır.

- Uygun teknoloji

- Organizasyon ve yöneticilik (liderlik)
Şekil 2. 25. BIM ile Bütünleşik Proje Süreci [24]

Proje: Flint Global V6 Motor Fabrikası Ek Binası
Yer: Flint, ABD
Mal Sahibi: General Motors Corp.
Alan: 41,000 m²
Süre: 35 hafta
Mimari-Mühendislik: Ghafari Associates, LLC
Sözleşme Tipi: Tasarla-İnşा Et
Kullanılan Yazılımlar: RAM, RAM Advance, SDS/2, Bentley (TriForma suite ve Project Wise), AutoCAD, Design Series, Quick Pen, IntelliCAD, Navisworks
BIM Alanları: 3 boyutlu BIM işbirliği, kanışıklık tespit, nihai belgeler, zamanında üretim, bileşen üretimi

Bu yapım sürecinde BIM'den daha verimli olarak yararlanabilme için şu görevler tanımlanmıştır:

- Proje de görev alan çalışanlar, BIM'in yararlarını optimize etmek üzere sayısal modellemeyi benimseyeceklidir.
• Ortaklar ve kurumlar arası işlemlerdeki gelişmenin olumlu etkilerini tüm proje çalışanlarının BIM araçlarını kullanması sağlanacaktır.
• Alt Yükleniciler ise 3 boyutlu modellerini sürekli revize etmeli ve BIM döngüsüne bilgi olarak girmelidir.
• Asıl zorluk olarak, yapı modelinin paylaşılması ve nasıl yapılacağını bilgisinin tüm proje katılımcılara aktarılması olarak tespit edilmiştir.

Bütün alt yükleniciler, BIM ilişkili teknolojiler kullanmış ve başarılı olduğu uzmanlık alanlarından seçilmiştir. Çelik üreticiler, mekanik, tesisat ve endüstriyel sistemler hâlihazırda iş akışlarına BIM'i adapte etmişlerdir.

Yazılım firmalarının eğitimleriyile beraber yürütülen tek bir proje sahasında çalıştığından dolayı modellemeyi problema ve çıkan sıkıntılar hızlı bir şekilde uzmanlar tarafından çözülmüştür.

Şekil 2. 26. Flint Motor Fabrikası Ek Binası Proje Süreci
2.14.2. Tasarım Süreci

BIM sisteminin kullanılmasıyla, geleneksel iki boyutlu pafta sistemli iş akışını ortadan kaldırarak, birbirini takip eden üç boyutlu iş akışıyla paralel bir düzene geçilmesini sağlamışlardır.

Bununla birlikte yerleşim planlarının çizimleri, çıkta paftalarının alınması ve dağıtılmaları gibi ek süreler de ortadan kaldırılmış ve BIM ile çalışma sürecinde, çakışma tespiti ve ön üretim gibi zaman tasarrufu sağlayan faydalar sağlanmıştır.

Tüm firma temsilcilerinin katılımıyla gerekli değişikliklerin tespiti ve doğru biçimde uygulanması için BIM modelinin kontrollerinin yapıldığı ve bağlılan ayarlarının düzlenenmiştir.

Mimari bileşenler, taşıyıcı çelik, havalandırma, mekanik donanım, ışıklandırma, kablo rayları, kanallar ve endüstriyel atık ile ilgili tahmini olarak 3000 ila 4000 kadar çakışıklık tanımlanmış sonunda çözüme kavuşturulmuştur.

Proje ekibi sanal modellerdeki çakışmaların tespiti için düzenli olarak bir araya gelmiş olup, problemler analiz edilmiş ve sorumlu gruplar tarafından gerekli değişiklikler yapılmış ve bu kararların kayıtları bütün ekiplere iletilmiştir. Birbir içine geçen alt sistemlerin karmaşıklığı ekinin çözümleriyile engellemiştir.

Tüm grup üyeleri güncel bilgilere her zaman ulaşabildi, projede doğru veri değişimi sağlanmış ve daha şeffaf bir süreç izlediğinden dolayı memnun kalmışlardır.
Şekil 2. 27. Flint Motor Fabrikası Ek Binası Proje Üretim Süreci

2.14.3. İnşaat Süreci ve Proje Yönetimi

Ghafari ve alt yüklenicilerin BIM uzmanlarının katılımıyla dört saatlik görüşme süresince takım güçlendirilmesi, beyin fırtınası ve problem çözme gibi teknikler kullanılmıştır.

Bu görüşme esnasında işler tespit edilmiş, olası israfların yok edilerek iş akışını geliştirilmesi tartışılmıştır. BIM çalışmasıyla, iki boyutlu çizimlerin gözden geçirilerek teslim edilmesi ihtiyacının ortadan kalkmasıyla saha çizimlerinin teslimatını hızlanmıştır.

İnşaat süresince BIM’in ana faydalarından olan yüksek seviyede ön üretim, ve iyi düzenlenmiş bir şantiye sahası olmuştur. İmalatçılar saha gereklilikleri en aza indirilmiş ve inşaatın başlamasıyla birlikte koordinasyona dayanan bir üretim ortaya koymuşlardır.

BIM sistemiyle oluşturulan 3 boyutlu model ve saha dışı değişikliklere olan ihtiyaç ön üretim ve örgütlenmeyi mümkün kılarak zamanında teslimat kurallarına çerçevesinde daha belirgin bir ürün siparişi sürecine ve dolayısıyla zamandan kazanılmasına yol açmıştır.

Bu iyi planlanmış süreç sayesinde, çelik yapı inşa işlemi herhangi bir değişiklik yapılmaya gerek duymaksizin 35 gün de tamamlanmıştır. Ön üretim ve örgütülü yaklaşım sayesinde havalandırma, mekanik ve elektrik tesisat işleri, inşaat sahasında herhangi fazladan bir iş gerekmeden zamanında tamamlanmıştır.

Bu çalışma alanında değişiklikler sayesinde çalışan ve malzeme değişiklikleri en alt seviyede kaldığından saha güvenliği artmış göstermiştir.
2.14.4. Deneyime Ait Sonuçlar
Projenin belirlenen zamandan daha erken tamamlanmasını başarısı, ekip içi iyi iletişimin sağlanmasıdır. Proje ekibi uyumlu bir şekilde çalışıp, oluşabilecek olumsuzlukları erkenden ortadan kaldırılmıştır.

Proje ekibinin birlikte çalışabilecekleri ve önceki aşamalarda isabetli ve bütünleşmiş kararlar alabileceği bir ortam yaratılmıştır. İş akışını bozacak sorunların elenerek proje skıntı yaşanmadan tamamlanmıştır.

Tasarım sürecince elde edilen faydaların inşa sürecine sorunsuzca aktarılmıştır. İş akış şemasında the varılan sessiz ve düzenli çalışan inşaat alanları ve inşaat alanlarında herhangi bir malzemenin israf edilmeden gidek BIM nin avantajları inşaat sırasında deneyimlenmiştir. Bunlarla birlikte az sayıda işçi çalıştırarak inşaat alanındaki güvencesi üst seviyede tutulmuştur. BIM sayesinde inşaat süreci boyunca oluşturululan neredeyse hiçbir değişikliğe ihtiyaç duymamış, kesin miktar listelemesi sayesinde üretim süresince malzemeden tasarruf edilmiştir.

Proje de dikkatli planlama, stratejik zaman programlaması, üst üste bindirilen tasarım süreçleriyle inşa süresinin 5 hafta önce bitmesi sağlanmıştır. Geleneksel proje yöntemleri ile BIM karşılaştırıldığında, Flint projesinde toplam sürenin %50 oranında azalabildiği kanıtlanmıştır.

Birinden diğerine net bilgiyi aktarmak, tasarım ve inşaat işlemleri bir noktada başlamak için yalan bir yaklaşım benimsenmiştir. Bilgi akışının kesinleşmesi için uygun mekanizmalar kurulmuştur. Özellikle, mühendislik detaylandırma faaliyetleri, inşaat faaliyetlerine göre programlandırılmıştır. Üç boyutlu BIM teknolojisi, basit üretim sistemi, tasarım ve işlem akış kontrolünü desteklemesi açısından, iki boyutlu CAD kullanımdan önemli duyarlılığı elemcemede oldukça iyi bir başarım ortaya koymmuştur.

Üç boyutlu modelleme kullanarak, yerleşim ve bağlantı için saha içi işleri azaltmak, birçok sistem ve sistem grubunun önceden hazırlanıp dışarıda monte edilebilmesini sağlamıştır. Tesis dışındaki çalışmalara verimliliği arttırmaktadır, otomasyon çalışmalara imkan vermektede, sıkışıklik gibi durumlarla karşı karşıya kalınması engellemekte, geçici depo işlemleri görece, miktarı öngörülemeyen atık malzeme, hava durumu gibi konularda fazladan sorumluluk ve maliyet getirmesine engel olmuştur.
Şekil 2. 28. Flint Motor Fabrikası Ek Binası [43]

2.15. BIM'in Sağladığı Avantajlar

Tasarım, yapım ve yönetim aşamalarında BIM'in sağladığı kriterler:

- Tasarım aşamasında - tasarım, program ve bütçe bilgilerine
- Yapım aşamasında – kalite, program ve maliyet bilgilerine
- Yönetim aşamasında – performans, kullanışılılık ve finansal bilgilerine (Özcan, 2010).

Bu bilgiler, tasarım, karar alma aşamaları, üretim, kullanım ve daha sonra ortaya çıkabilecek problemlerin çözümünde veri olarak kullanılır; bu sayede maliyet, hız ve işgúcünden önemli bir tasarruf sağlanır.

Yapıla ilgili verilerin sisteme dâhil olan dijital ortamda saklanıp anında güncellenmesi kolaylaştırılmıştır. Kolaylıkla ulaşılabilmesi sayesinde mimarlar, mühendisler, inşaatçılar ve mal sahibine proje sürecine dair net bilgiler sunarak, hızlı ve doğru karar almada, düşük maliyetli ama daha kaliteli işlerin yapılmasına olanak sağlar.

Yapının güvenilir dijital temsiline dayanarak tasarım kararlarının alınmasında, inşaat planlanmasında da, yüksek kaliteli inşaat dokümanları hazırlanmasında, performans öngörüleri ve maliyet tahminleri yapılmaktadır.

Geleneksel yöntemlerde oldugunun aksine her bir pafta için ayrı ayrı çizim yapılması gerektirmez. Birbiriyle koordineli çalışma arayüzü sayesinde herhangi bir bölümdede yapılan çalışmaların yanında diğer bölümlere yansımasını sağlayan plan, kesit ve görüşülerin eş zamanlı olarak ilerlemesini sağlar.

Çizimlerde ya da tablolarda yapılan değişiklikler yine koordineli bir şekilde bir diğerine de guncellenerek tutarlılık sağlanır. Bu sayede proje çiziminde kaybedilen zamanı en aza indirek proje süreçinde verimliliği arttırmır.

Sağladığı yüksek koordinasyon ve tutarlılık sayesinde projeye ait riskler ve sorunları en aza indirir. Mimarlar, mal sahibi, inşaat mühendisleri, yapı uzmanları, mekanik
sistem mühendisleri, ve imalatçıların katkıda bulunabilmelerini ve sağlıklı bir bilgi alışverişi verişinde bulunur.

BIM sayesinde müşteriye proje maliyetine, proje sürecine ve kalitesine yönelik daha kesin tahminler sunulabilir. Bilgi paylaşımını en üst düzeyde tutarak müşteri memnuniyetine katkıda bulunur.

Günümüzde tasarım süreci tek tek çizgiler ile dikkat etmekte, daireler oluşturup sonra onların üzerine çeşitli semboller koyarak ne olduklarını göstermeden daha ileri bir aşamadadır. Bir yapıdaki duvarı çizebilmek için onlarca çizgiyi tek tek çizip sonra onları birleştirerek duvarı oluştururmak yerine, tüm bileşenleri bütün olarak alan, görsel olarak kullanılacak malzeme, renk, kalınlık, boyut gibi özelliklerini tek bir bakışta görebilmeyi sağlayan çok katmanlı bir yaklaşımın oluştuğu belirtmektedir.

Bu avantajları Deutsch (2011), yapım projelerinde BIM kullanımından elde edilecek sonuçların aşağıdaki Şekil 2.29'da gösterilen faktörlere bağlı olduğunu belirtmiştir.

![Şekil 2.29. BIM Uygulamasının Olumlu Sonuç Vermesinde Etkisi Olan Kuvvetler](image)

şekil 2.29. BIM Uygulamasının Olumlu Sonuç Vermesinde Etkisi Olan Kuvvetler [57]
Şekil 2. 30. BIM’in Pafta Düzeni [41]

2.16. BIM’in Getirileri ve Zorlukları

Teknolojinin gelişimiyle BIM sistemini duyulan ihtiyaça cevap vermeye başlamasına rağmen, sektörde yaygınlaşması beklediğinden çok daha yavaş gerçekleşmektedir.

Sisteme yavaş geçişin teknik ve parasal bir konu olmanın ötesinde proje katılımcılarının bilgisayarda modelleme konusunda yeterli bilgiye sahip olmamasıdır. Proje katılımcıları BIM’in olumlu yönleri olduğunu düşünmelerine karşı kullanmayı tercih etmektedir. Sebebi ise bilgisayar yazılım programları kullanımını konusunda yeterli bilgiye sahip olmamalarıdır. Bu tür bireyler genellikle kariyerinin başında böyle bir yapı ile karşılaştırmış yaşça büyük kimselerdir. Oysaki BIM meydana gelen problemlerin çözümünde iki boyutlu geleneksel çizim programlarına göre daha hızlıdır. Fakat kullanımının öğrenilmesi için pratik yapılmasının gerektiğini nedeniyle kişiler bunu ekstra bir uğraş olarak görebilmektedirler [57]

Tercih edilmemesinin sebeplerinin başlıca nedenleri aşağıda verilmiştir:

2.16.1. Yapı Sektörünün Örgütlenmesindeki Dağınlık

Yapı sektörü, proje bazında birbirileşti işbirliği yapan küçük şirketlerden oluşmaktadır. Sektördaki dağınlık örgütlenme biçimi, yeni bir bilgi teknoloji uygulanmasına engel
oluşturmakta. Çünkü, küçük şirketler hem teknoloji değişikliklerinin maliyetlerini karşılayamamakta, hem de kendileri böyle sistemlere geçmeleri bile birlikte çalıştıkları gruplarla birlikte çalışabilirlik açısından problemler yaşayabilmektedirler.

Teknoloji alanında birkaç kuruluş sektörünün liderliğini yapmakta olup, diğerleri ise bu kuruluşların izinden giderek rekabetçi piyasa ortamına uyum sağlamaktadırlar. Yapı sektörünün dağınık örgütlenmesinden dolayı diğer şirketlere örnek olarak olacak lider şirketlerin etkisi de daha az olmaktadır.

2.16.2. Yeni Tasarım Yöntemleri Gereksinimi

Yapı sektörünün içerisinde yeni tasarım yöntemleri geliştirmek bir sorun yaratmaktadır. Bu konudaki direnci kırmak için yapı profesyonellerinin geleneksel olarak kullandıkları yöntemlerin sınırlı oluşunu ve bu yeni yöntemin getirdiği avantajların farkında olmalarını sağlamaktır.

Yapı profesyonelleri bu araçları günlük pratiklerinde kullanmaya çok istekli olduğunda bile bu uygulamalar tasarım süreçlerini yeniden düzenlemek, bu konuda personeli eğitmek, mesleki sorumlulukları ve ücret politikalarını yeniden yapılandırmak gibi gereksinimler doğuracaktır. (Sullivan, 2005)

2.16.3. Yapı Tasarımı Bilgisinin Hesaplanabilirliği ve Mevcut Sistemlerin Sınırları

BIM sistemlerinin başarılı olabilmesi için önemli olan bir konu ise, bu sistemlerin vaad ettiklerini ne kadar gerçekleştirebilecekleri, karmaşık bir bilgi bütünü olan yapı tasarımı bilgisinin ne kadarının sayısal sistemlerde temsil edilebilir ya da hesaplanabilir olduğunu.

Bugünkü teknolojilerle tüm tasarım bilgilerinin tek bir model üzerinde sorunsuz bir şekilde temsili henüz bir hayal gibi görünüyor. Şu anda bu tür sistemler en çok teknik gereksinimleri yüksek fabrika yapıları gibi projelerde tüm verimliliğiyle kullanılmaktadır.

2.17. Bölüm Sonucu

Yapım projelerinin gerçekleştirilmesi sırasında yer alan katılımcılar, ortaya çıkan karar değişikliklerinin ve problemlerin azaltılmasıyla beraber, zaman ve maliyet açısından daha başarılı projelerin ortaya çıkmasını istemşüldüler. Bunun sağlanabilmesi için de ekipler arasında etkili bir işbirliğinin oluşturulması, kullanılan bilgilerin doğru bir biçimde yönetilmesi gerekmektedir. Bu ihtiyaçlar doğrultusunda gelişen teknolojinin de yardımcı ile işbirliğini gerektiren böyle projelerin süreç içerisindeki bütün verilerin yönetimini gerçekleştirmeyi amaçlayan, BIM süreci ortaya çıkmıştır.

BIM süreç içerisinde binanın dijital bir modeli oluşturulmakta, simulasyonlar, enerji analizleri yapılmakta, olası çalkâlalar tespit edilmekte ve raporlanabilmektedir. Ayrıca tasarım, proje, planlama, pazarlama, kaynak yönetimi, bilgi paylaşımı, işletme gibi konularda uyum içinde çalışma ihtiyacına bina bilgi sistemleri karşılık verebilecek durumdadır.

Tasarımcıya hızlı ve hatasız tasarım yapma imkânı sunar, yükleniciye maliyet kontrollü devir yapabilme imkânı verir ve müşteriyeye de sahip olacağı taşınmazın içerisindeki malzeme bilgilerini görsel olarak sunar. Bu sistemin yapı sektöründe
kullanımının artırılması daha güvenilir bir ticaretin yanı sıra, daha şeffaf bir üretimde oluşmasına katkıda bulunmaktadır.

BIM'in etkin bir şekilde uygulanması; daha kaliteli, yaşanabilir, ekonomik yapılar üretilebilmesinin yanı sıra önemli bir toplumsal fayda da sağlamaktadır. Proje süreci boyunca BIM, verilerin paylaşılmasına imkân sunması bu şekilde bilginin yayılması ve koordinasyonunu sağlamaktadır.

Bu durumun temelinde kullanılan yazılımların yetersizliği yatmaktadır. Uzmanların kullandığı birbirinden farklı birçok yazılımın hem ekip hem de ekipler arası entegrasyonu desteklememesi, ekipler arası iletişim belirsiz yollarla sağlanan geri beslemelerle sağlanması düşünülebilir. Genel iletişimin düzeninin oturulmamış olması; yapılan tavsiyeler, çözüm önerileri ve geri bildirimlerin kayıpları, tüm ekipler için koordine şekilde ulaşılmasına, haberleşme yavaslamasına ve ortaya çıkan veya çıkacak sorunların da geç ağırlanmalara neden olabilmektedir.
3. REVIT ARCHITECTURE İLE TÜRKİYE'DEKİ MİMARLIK ÖFİSLERİN KULLANIM DENEYİMLERİ

<table>
<thead>
<tr>
<th>Firma Adı</th>
<th>Proje</th>
<th>Resim</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB MİMARLIK</td>
<td>Kışıklı ve Bulguru Villa Bakırpark İş Merkezi- İstanbul, Kiptaş İçerenköy Konutları- İstanbul</td>
<td></td>
</tr>
<tr>
<td>Mimar Bahadır</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAŞARAN</td>
<td>Akofis Park/ Ümraniye- İstanbul/ 2008-2009</td>
<td></td>
</tr>
<tr>
<td>YENER MİMARLIK</td>
<td>İlkо İlaç Konya</td>
<td></td>
</tr>
<tr>
<td>Mimar Gülay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BODUR</td>
<td>İlkо İlaç / 3.Organize Sanayi Bölgesi- Konya/ 2011</td>
<td></td>
</tr>
<tr>
<td>SELCEN MİMARLIK</td>
<td>Romanya Konut Projesi</td>
<td></td>
</tr>
<tr>
<td>Mimar Cengiz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIR</td>
<td>Romanya Konut Projesi / Yeni Bükreş- Romanya/ 2008</td>
<td></td>
</tr>
<tr>
<td>Mimarlık</td>
<td>Mimar/ Mühendis</td>
<td>Proje Adı</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>KORAY YAVUZER MİMARLIK</td>
<td>Mimar Koray YAVUZER</td>
<td>250 m² Kafe 200 m² Kuaför 500 m² Villa Projeleri İç dekorasyon</td>
</tr>
<tr>
<td>GÜZEN MİMARLIK</td>
<td>Mimar Dilara KOÇAK</td>
<td>Total Oil Projesi Ankara Danıştay Hizmet Binası Yarışması</td>
</tr>
<tr>
<td>Proje</td>
<td>Projenin Tanımlaması</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>YPU Mimar Güneş Gökçe</td>
<td>Gaziantep Planetaryum Binası/Kütüphane ve Bilim Müzesi/ 2007</td>
<td></td>
</tr>
<tr>
<td>İstanbul Ulaşım A.Ş. Proje Ofisi Mimar Celil Yıldırım</td>
<td>Şişhane-Mecidiyeköy 11 istasyonlu havaray projesi</td>
<td></td>
</tr>
<tr>
<td>VEN MİMARLIK Y. MİMAR Gül Güven</td>
<td>Rantaş Alacaatlı Konut/ Ankara</td>
<td></td>
</tr>
<tr>
<td>KÜTAHYA SERAMİK Dr. MİMAR Pınar Şahîn</td>
<td>Taş Yapı Mashattan Maslak Idea İnşaat Doğa Evleri/ Silivri Selin Evleri ve Soyak Islak Hacim Idea İnşaat, Doğa Evleri/ Silivri/ 2012-2014</td>
<td></td>
</tr>
<tr>
<td>Firmalar</td>
<td>Proje Detayları</td>
<td>Görsel</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>ARKAD MİMARLIK MİMAR Murat AKPINAR</td>
<td>Bağcılar Stad Projesi/Bağcılar Gençlik Merkezi Projesi/Bağcılar Rota Tekstil Ofis Binası/ Güneşli</td>
<td>Bağcılar Stad Projesi/ Bağcılar- İstanbul/ 2001</td>
</tr>
<tr>
<td>Era Şehircilik Mimarlık Müşavirlik Ltd. Şti MİMAR Ekim Orhan İSMİ</td>
<td>Garanti Teknoloji Kampüsü Projesi</td>
<td>Tuzla İş Bankası Kesit Görünümü/ Tuzla- İstanbul/ 2010</td>
</tr>
</tbody>
</table>

Tablo 3.1. Firmaların BIM Sürecinde Çalışmaları[36]
3.15. Bölüm Sonucu

Bu bölümde inşaat firmalarının BIM tabanlı Revit yazılımıyla yaptıkları projelerde elde ettikleri avantajlar belirtilmiştir. Kriterler aşağıda bir sıra dahilinde verilmektedir:

- Firma hakedişlerinin yapılabilmesi için, bütçe gelir gider değerlendirmesi
- İş emirlerinin hazırlanmasında, buna bağlı olarak personel hiyerarşisi, imalat ekibinin hazırlanması,
- İş programının belirlenmesi,
- Her yeni imalatın ve işin süresi ve maliyetine etkisinin belirlenmesi,
- Proje yönetiminin tüm aşamalarında yapılan ve yapılacak olan işlemlerin tespit edilmesi,
- Keşif hazırlanması,
- Planlama,
- Stok ihtiyaç ve kontrolarin belirlenmesi,
- Üretilen ve tüketilen raporların hazırlanması,
- Satın alma, ödeme kararları alınması,
- İş programı akış tablosunun belirlenmesi,
- Metraj birim fiyat ve imalat analizlerinin yapılmaması,
- Partnerle olan koordinasyonlarda ve sahada devam eden imalatların tasarrımlar tarafından indirgenmesi perdesi
- Static detaylarının proje üzerindeki ve imalat esnasındaki uyumsuzlukları elektrik, mimari, peyzaj ve mekanik projelerin yapım öncesi ve yapım sonrası birlikte değerlendirme ve çakışma tespitlerinin önceden belirlenmesi,
- Zaman, maliyet, işçilik giderlerinin ve kayıpların en aza indirgenmesi,
- Proje üstünde ve uygulama esnasında istenen sayıda kesit alınarak en doğru tespit ulaşılmaması,
- Projelerinde programlama aşamasında işlerin kolaylaştırılması ve zaman kazanılması sağlanması,
- Tasarımı üç boyutlu model üzerinden devam edilmesi,
- Tasarım sırasında plan, kesit, cephe görünüşlerin elde edilmesi,
- Kısa zamanda özgür proje yapılabilmesi,
- Menülerin kolay ve pratik kullanılması,
- Yapılan görselleştirmelerin gerçekle yakını olması,
- Kütüphane yaratmak açısından ara yüzü pratik ve kullanılabiliyor olması,
- Mekânların alanlarını ve hacimlerini hesaplayabilme ile mahal listelerini oluşturabilmesi,
- İnşaat saflarına paralel çizgideki kullanım, proje ve uygulama arasındaki birebir uygunluk sağlanması,
- Yapılan değişikliğin metraj listelerine kadar tüm paftalarda güncellenmesi, çok zaman kazandırılması.

Sonuç olarak firmalar BIM'i; yapılı tasarımı, inşasında israfı ve verimsizliği azaltmak iddiasıyla çıkılmış bir modeldir. Birçok firma ve organizasyon yatırımlarının gelir olarak döneceği dair kanıtların oluşması için “bekle ve gör” taktığını izlemektedirler. henüz BIM, proje üretiminde standart haline gelmiş değilse de önünün açık olduğu söylenebilir.
4. AUTODESK REVIT ARCHITECTURE İLE "G VİLLA" KONUT PROJESİ"

2016 yılının Mart ayında müşterinin istekleri ve ihtiyaçları doğrultusunda İstanbul Çatalca bölgesinde yer alan arsaya 3 kattan oluşan bir konut proje tasarlanmaya başlandı.

Modelinin geliştirilmesi sürecinde, Autodesk Revit platformu seçilmiştir. Bilgisayar modelinde, uygulama için gerekli olan plan, kesit, görüntüler gibi çizim dökümlerinin yanında istenilen metrajları ve görselleştirmeler için gerekcecek 3D modeli de sunmaktadır. Yapım sürecinin başlanması için gerekli olan çizim ve metraj dökümleri de sağlanacağından dolayı bu sürecin başlaması için engel kalmamaktadır.

Dokümantasyonlar ile yapım için gerekli veriler oluşturulmuştur. Bu veriler yapımı üstlenecek olan firmaların kendi maliyet analizlerini çıkararak teklif verme süreçlerinde daha az hata payı ile çalışmalarını mümkün kılmaktadır.

4.1. BIM ile Mimari Proje

2. Normal kat ise 2 adet çocuk odası, bunlara ait olarak 1 adet banyo-wc ve ebeveyn odası içerisinde kendine ait bir banyo-wc ve balkon bulunmaktadır.

Şekil 4. 2. "G Villa Projesi" 1.Bodrum Kat Planı
Şekil 4. 3. "G Villa Projesi" Zemin Kat Planı
Şekil 4. 7. "G Villa Projesi" B-B Kesiti
Şekil 4. 8. "G Villa Projesi" C-C Kesiti
4.2. BIM ile Statik Projesi

Şekil 4.9. "G Villa Projesi" İskellet Sistemi

4.3. BIM ile Mekanik Tesisat Projesi

Mekanik projesi çizilirken yapının tüm projeleri (mimari, statik ve elektrik) de dikkate alınmıştır.

Programın özelliklerinden birisi ise ısıtma ve soğutma yükleri hesabını yapabilecek alt yapıya sahip olduğu için tasarım aşamasında yararlanılmıştır.

HVAC sisteminin fan ve pomпа seçimleri yapılmıştır. Hatlardaki tüm debiler toplanabilmesi, hangi mahal hava verilmış, ne kadar emiş yapılmış görülebilmek için tasarımgorbülümektir. Verimli HVAC sistemi yalnızca mühendislik işi değil, aynı zamanda disiplinler arası çalışmayı (mimarlık, ekonomi, çevre vb. bilimler) gerektiren bir tasarım problemi olduğu koyulmuştur.

Şekil 4. 10. "G Villa Projesi" 3D Mekanik Tesisatı
4.4. BIM İle Elektrik Tesisat Projesi

Elektrik iç tesisat projelerinde genellikle 2D bilgisayar destekli çizim programları kullanılır. Çizim kaynaktan (elektrik direği) ana panoya, ana panodan diğer panolara ve onlardan da elektrik malzemelerine (prizler, ışık dağıtım cihazları, vs…) hat çekilmesi şeklinde olur.

Elektrik tesisatı ile uyumlu olarak yerleşirilen mekanik ekipmanlar daha sonra kanal ve borular aracılığıyla bileşenlerin koordinasyonları yapılır ve cihazlara bağlanır. Revit programı ile hangi mahalle kaç voltlu armatür kullanacağını hesaplanır.

4.5. BIM ile Sıhhi Tesisat Projesi

Sıhhi tesisat projesi hazırlanırken 3 adet boru sistemi döşenmiştir. Bunlar; sıcak su, soğuk su ve pis su hatlarıdır. Bu boruların ana hattını herhangi bir sorunda rahat kontrol edilmesi için binaya ait ısıtma tesisatının geçtiği şafttan geçirilmiştir.

Revit programının özelliklerinden birisi de hatların toplam yük ve sarfiyat birimlerinin görebilmesi, bu sayede de kontrollerin yapılması kolaylaşmaktadır.

Sıcak su tesisat odasında bulunan boylerden sağlanmaktadır. Banyolarda lavabo ve duşlara, mutfağa ise çamaşır makinasi, bulaşık makinasi ve lavaboya döşenmiştir.

Soğuk su tesisatı çatıda bulunan chillerden elde edilmektedir. Bu sistem banyoda; lavabo, duş ve klozete, mutfağa ise çamaşır makinasi, bulaşık makinasi ve lavaboya döşenmiştir.

Pis su tesisatında döşemenin altından İslak hacim elemanlarından çıkan pis su boruları tek boruya bağlanarak tekniğe safttan ana boru hattıyla kanalizasyona bağlanmıştır.

Ana su boru hatları mekanik tesisat için bırakılmış saçtaftan indirilmiştir. Böylece herhangi bir sorunda kolay erişim sağlanabilir.
Şekil 4. 15. "G Villa Projesi" 1.Bodrum Kat Sızdı Tesisat Planı
Şekil 4. 16. "G Villa Projesi" Zemin Kat Sihhi Tesisat Planı
Şekil 4. 17. "G Villa Projesi” 1.Normal Kat Sıhhi Tesisat Planı
Şekil 4. 20. "G Villa Projesi" Mutfak Sıtahi Tesisat 3D

Şekil 4. 21. "G Villa Projesi" Banyo-Wc Sıtahi Tesisat 3D
4.6. Bölüm Sonucu

Günümüzde yapı üretiminde farklı uzmanlık ve kabilyetlerin maliyetli ve kolay bulunamıyor olduğu geleneksel süreçlerde büyük bir zorluk olarak göze çarpmaktadır. Bu modele uyum sağlayarak bu süreçleri daha kolay şekilde yalnızca büyük şehirler veya özel projelere değil, tüm alanlarda kolayça erişilebilir olması da amaçlanmaktadır.

Önerilen model; tasarım, inşa, üretim ve bina yönetimi fazlarını içine alan ve entegre proje testimi kavramı ile örtüşen bir yaklaşım ortaya koymaktadır.

Revit programıyla oluşturulan model sayesinde; projenin her aşamasında maliyet, analiz, alternatif geliştirme imkanı tanıyan projenin tamamlanmasını en doğru tahminlerle sağlanmaktadır. Yüksek iletişim ve veri alışverişi sayesinde takım çalışmasını destekleyerek, tasarımcı, mal sahibi, yüklenici, mühendis ve diğer uzmanların bir arada çalışmalarını sağlayarak, karar alma mekanizmalarını destekleyerek para ve zaman tasarrufu sağlamanmaktadır.

Klasik sistemler ile yapılan yanlışlıkların dolayısıyla oluşan gerekli dokümantasyon ve hatta uygulamada hatalar bu sistem ile minimuma indirilmiştir. Projede olası detay değişiklikleri kolayca güncellenabilir, 3D modelde aşağıda görünebilir ve istenildiği anda detayların çıktılari çok kısa bir süre içerisinde alınabilir, bu sayede iş yükünün azalığıni söyleyebilir.

BIM ile bütünleşik proje sürecinin birliği kullanılması sonucu ortaya çıkan birlikte, sadece verimliliği arttırmalı hataları azaltmakla kalmayıp alternatif yaklaşımlara yönelmeye de sağlamıştır.
Şekil 4. 22. "G Villa Projesi" 3D Görünümü
5. SONUÇLAR VE ÖNERİLER

BIM platformunun, ülkemizde kullanımının yaygınlaşması açısından için modelleme, görselleme, dokümantasyon ve bina yaşam döngüsünün ötesinde gerçek alanında entegre ve süreçlerin benimsenmesi ile mümkün olacaktır. Ancak modellerinin yaygınlaşması konusunda ülkemizde özgü birçok farklı engel bulunmaktadır. Teknolojik kabiliyetler, yazılım maliyetleri, personel kalifikasyonu gibi konular bunlar arasında sayılabilir.

Bu yüksek lisans tez çalışması önerilen modelde, BIM’i pratiğe dönüştürme ve akademik anlamda öğrencinin yüksek performanslı bina tasarımı konusundaki bilgilerini artırması için kullanılabilme potansiyelinin taşımaktadır.

İnşaat firmalarının rekabetli ortamda hayatta kalanı için etkin proje yönetimi yapmaları, kaynaklarını verimli kullanmaları gerektirmektedir. Bu durum ise gelişen teknolojleri proje yönetimini adapte etme ve akademik anlamda öğrencilerin yüksek performanslı bina tasarımı konusundaki bilgilerini artırması için kullanılabilme potansiyelinin taşımaktadır.

Mimarlık, mühendislik ve yapım endüstrisindeki BIM kullanım düzeyi ülkeler arasında çeşitlilik göstermektedir. BIM’in öneminin anlaşılmadığı, BIM farkındalığının olmadığı ortamda, etkin uygulama için geliştirilmesi gereken BIM protokollerinin de hiçbir anlamı ve önemi olmamaktadır. BIM farkındalığı arttırılması için mimarlık, mühendislik ve yapım sektörünün gelişmesine katkı bulunan bağimsiz kurumlar ve üniversiteler gibi eğitim kurumları tarafından BIM’in öneminin, sektörde ve sektörde yer alan aktörlerle sağlayacağı katkılar konu alan eğitim, seminer ve konferansları düzenlemektedir. Sektördeki BIM farkındalığı arttırılmasının ardından ise BIM kullanımının arttırılmasına yönelik olarak adımların atılması gerekmektedir.

Çalışma neticesinde geleneksel bilgisayar tabanlı tasarım sistemlerinden BIM’e geçişte tasarım aşamasında ortaya çıkan zorluklar tespit edilmiş ve çözüm önerilerinde bulunulmuştur. Tespit edilen sorunların çözümleri yine BIM’e dahilinde bulunabileceğini düşününcesinden yola çıkarak, gelecekteki süreçte bu teknolojinin mimarlıkta ve inşaat endüstrisinin tamamında daha da yaygın olarak kullanılacağı söylenebilir. Bu durum kolaylık ve güven verecek yazılımların hazırlanması ve geliştirilmesine katkıda bulunmalıdır. Ayrıca üniversiteler, BIM’e ilişkin müfredatlarında değişiklik yaparak öğrencilerin bu konuda yetişmiş olarak sektörde katılmalarını sağlayabilirler.

Bu noktada paylaşılabilecek ve uyarlansabilecek BIM modellerinin daha ulaşılabılır hale gelmesi tüm bu sorunlara yönelik bir çözüm yaklaşımını oluşturur. Ayrıca BIM temellerine dayanan model ile performans kaygısı bulunan yapı üretime için gerekli uzmanlık bilgisi, yalnızca büyük bütçeli projelerde yer almaktan çıkıp, dengeli bir şekilde dağıtılmasına olanak sağlayabileceğini söylenebilir. Bu durum özellikle sektörün oldukça büyük bir bölümü oluşturan küçük ve orta ölçekli mimarlık ve inşaat firmaları için farklı avantajları ve olası iş modeli dönüşümlerini beraberinde getirmektedir.
KAYNAKLAR

[16] Isısan " Mimarın Tesisat El Kitabı" İsısan Çalışmaları No : 370-1
[17] Isısan " Mimarın Tesisat El Kitabı" İsısan Çalışmaları No : 370-2

[38] http://www.autodesk.com/revit (Temmuz 2016)

[41] www.archicad.pbworks.com (Temmuz 2016)

[42] www.graphisoft.com

[44] www.sanita.com

[47] www.teklabimsight.com/

[50] www.piclect.com

[53] http://www.lakedistrict-architect.co.uk

[56] www.revitmep.com

[58] http://sayisalmimar.com

EKLER

EK-A: Döşeme Katmanları
EK-B: Duvar Katmanları
EK C: 3D Kat Planı
EK D: Kesit
EK E: Islak Hacim Kat Planı
EK-A: Döşeme Katmanları

Şekil A. 1. "G Villa Projesi" Radyaltemel Katmanları

Şekil A. 2. "G Villa Projesi" Kat Döşeme Katmanları

EK-B: Duvar Katmanları

Şekil B.1. "G Villa Projesi" Bodrum Kat Duvar Katmanları

Şekil B.2. "G Villa Projesi" Normal Kat Duvar Katmanları

Şekil B. 3. "G Villa Projesi" Normal Kat İç Duvar Katmanları
EK C: 3D Kat Planı

Şekil C. 1. "G Villa Projesi" 1.Normal Kat Planı 3D
Şekil D.1. "G Villa Projesi" Mekanik Projesi Kesit
EK E: Islak Hacım Kat Planı

Şekil E. 1. "G Villa Projesi" 1/ P-5 Islak Hacım Detayı

Şekil E. 2. "G Villa Projesi" 2/ P-5 Mutfak Hacım Detayı
Şekil E. 3. "G Villa Projesi" 3/ P-5 Mutfak Hacim Detayı
ÖZGEÇMİŞ

Kişisel Bilgiler
Uruğnu : T.C.
Doğum Yeri : İstanbul
Doğum Tarihi : 07/02/1990
E-mail : cuhadargozde@gmail.com

Kariyer Hedefi

Eğitimini almakta olduğu mimarlık alanında bilgi ve tecrübelerini tasarım ve uygulama alanlarında artırmak

Eğitim
2014-2016 : İstanbul Kültür Üniversitesi, Fen Bilimleri, Mimarlık Bölümü, Mimari Mühendislik Yükseks Lisans
Tez Konusu : Mimarlık Hizmeti Kapsamında Bina Bilgi Modelleme Uygulamaları ve Autodesk Revit Platformunda Konut Projesi
2009-2013 : İstanbul Kültür Üniversitesi, Mimarlık Fakültesi, Mimari Bölümü
2012 Erasmus: Ecole Nationale Superieure d'Architecture de Grenoble
2004-2009 : Saint Benoit Fransız Lisesi
1997-2004 : F.M.V. Ayazağa İşık İlköğretim Okulu

Staj
Plan İmar İnşaat Proje (35 günlük büro staji)
Okyanus grup-Nasakoma Mall Of İstanbul (25 günlük şantiye staji)

Yabancı Dil
Fransızca: İyi Seviyede
İngilizce: Orta Seviyede
Rusça: Başlangıç Seviyede

Bilgisayar
Autocad ileri derece, Archicad orta düzeyde, Sketch Up orta düzeyde, Photoshop orta düzeyde, Microsoft Ofis 2013; Excel, Word, Powerpoint iyi düzeyde, İnternet