GÖZLEMLERDEN HAREKETLE DİFERANSİYEL DENKLEMİN
ELDE EDİLMESİ

Erdem BERBER¹, Kasım KOÇAK²

ÖZET
Gözlemlerden hareketle bulunan dinamik sistemın elde edilmişsi problemi günümüzde önemli bir çalışma alanıdır. Dinamik sistem bir kez elde edil dikten sonra bu dinamik sistem kullanılarak süreç hakkında önemli bilgiler ortaya konabilir. Örneğin, model kullanılarak değişkenler arasındaki etkileşimler ve nonlineerlik derecesi hakkında önemli bilgiler elde edilebilir, sistemin kararlılık özellikleri incelenebilir, parametrelerde meydana gelen değişimlere ve dış zorlamaları karşı modelin tepkisi incelenebilir ve elde edilen model öngörü amacıyla yönelik olarak kullanılabılır.

Bu çalışmada günüm hom topol bulharlaşma miktarı, günüm hom ortalamaları rüzgar hızı ve günüm hom ortalamaları sıcaklık zaman serileri kullanılarak, bulharlaşmaı idare eden dinamik sistem yöngü metodu ile tahmin edilmiştir. Bu şekilde elde edilen bulharlaşma miktarı ile gerçek bulharlaşma miktarları arasındaki fark ihmal edilebilecek düzeydedir.

1. GİRİŞ

Günümüzde mevcut zaman serilerinden hareketle, olayı idare eden dinamik sistem diferansiyel denklem formunda elde edilebilmektedir.

Zaman serilerinden diferansiyel denklem elde etme yöntemleri, günümüzde önemli bir bilimsel çalışma alanı oluşturmaktadır. Nonlineer zaman serisi analizindeki gelişmeler, gelecekteki gelişmeler temel oluşturmacısına önemli ilerlemeler kaydetmiştir. Crutchfield ve McNama (1986) tarafından dinamik sistemler analitik model uydurmanın iki farklı yaklaşımlı önerilmiştir:

a. Sistemın kısa-vade davranışını kullanarak lokal dinamikleri tanımlanak,
b. Uzun-vade davranışdan çekicinin dinamiklerini yaklaştık olarak elde etmek.

Diğer taraftan Cremers ve Hübler (1986), uygun çekicinin bütün noktalarında sistemın kısa zamanlı davranışın analizine dayanarak “akış metoduunu” ileri sürmülerdir. Akış meto-

¹İstanbul Teknik Üniversitesi, Uçak ve Uzay Biliimleri Fakültesi, Meteoroloji Mühendisliği Bölümü 34469 Maslak, İstanbul

Çalışmada buharlaşma, sıcaklık ve rüzgar hızı zaman serilerinden buharlaşmayı idare eden dinamik sistem in elde edilmesi için yöünge metodu kullanılmıştır. Bu metot çeşitli meteorolojik süreçlere uygulanabilecek bir esnekliğe sahip olmasının nedeniyle özellikle tercih edilmiştir.

Bir meteorolojik istasyonu buharlaşmanın tipik yıllık davranışını modellemek için nonlineer bir diferansiyel denklem sistemi buharlaşma, sıcaklık ve rüzgar hızının ölçülmüş zaman serilerinden yararlanarak yeniden kurulmuştur. Sıcaklık ve rüzgar hızı ele alınan sürecin bağımsız değişkenleri, buharlaşma ise bağımlı değişkeni şeklinde düşünülmüştür.

2. ZAMAN SERİLERİNDEN DİNAMİK SİSTEMLİN ELDE EDİLMESİ

Diferansiyel denklem formunda elde edilen model kullanılarak değişkenler arasındaki etkileşimler ve nonlineerlik derecesi hakkında önemli bilgiler elde edilebilir. Ayrıca model aracılığıyla sistemün kararlılık özellikleri incelenebilir. Diğer taraftan parametrelerde meydana gelen değişimlere ve dış zorlamalara karşı modelin tepkisi incelenebilir. Tüm bunlara ek olarak elde edilen model öngörü amacına yönelik olarak kullanılabilir.

Bu çalışmada kullanılan olan metot düşük boyutlu dinamik sistemlerin modellemesinde oldukça etkili olan yöünge metodudur.

Yöünge Metodu

birinci mertebeden adı diferansiyel denklem sistem ile tanımlı bir dinamik sistem şu şekilde verilebilir:

\[\dot{x} = f(x,t) \]

Bu eşitlikte \(x\) durum değişkeni vektörüdür, \(t\) ise zaman temsil etmektedir.

Hareket denkleminin yeniden kurulması için orijinal yöngeye en yakın model yöngeminin diferansiyel denklemi elde edilmelidir. Modelin matematiksel formu önceden belirlenir.

Dinamik sistemler teorisi göre, bir sistem zamansal evrimi faz uzayındaki yöngeleri ile temsil edilebilir. Faz uzayının koordinatları, sistemın evrimini tam olarak gösterebilme için gereklı olan durum değişkenlerinden meydana gelir. Bu uzaydaki her bir yöngede, sistem'in farklı başlangıç koşullarına karşılık gelen evrimi temsil eder. Faz portreleri, geçici bir durumdan sonra bütün yöngeleri kendi üzerinde çekici ve çekici (attractor) olarak

Yörünge metodunda kullanılabilecek olan diferansiyel denklemi şu formda olduğu kabul edilecektir:

$$\dot{x}_i = \sum_{k=1}^{K} c_{ik} F_{ik}(x_1, x_2, ..., x_D) \quad i = 1, 2, ..., D \quad (2)$$

Bu eşitlikte c_{ik} diferansiyel denklemin katsayıları ve $F_{ik}(x_1, x_2, ..., x_D)$ yaklaşım fonksiyonudur. K yaklaşım fonksiyonu sayısı, D ise model için seçilen durum değişkeni sayısıdır. Eğer $F_{ik} 3.$ dereceden bir polinom olarak seçilirse (2) denklemi aşağıda verildiği gibi yazılabilir:

$$\dot{x}_i = \left\{ \begin{array}{l}
 c_{i,1}x_1 + c_{i,2}x_1^2 + c_{i,3}x_1^3 + c_{i,4}x_2 + c_{i,5}x_2^2 + c_{i,6}x_2^3 \\
 + c_{i,7}x_3 + c_{i,8}x_3^2 + c_{i,9}x_3^3 + c_{i,10}x_3^4 + c_{i,11}x_3^2 \cdot x_2 \\
 + c_{i,12}x_2^2 + c_{i,13}x_2^3 + c_{i,14}x_2^4 + c_{i,15}x_2^2 \cdot x_3 \\
 + c_{i,16}x_3^2 + c_{i,17}x_3^3 + c_{i,18}x_3^4 + c_{i,19}x_3^2 + c_{i,20}x_3^3 \\
\end{array} \right. \quad (3)$$

Yörünge metodu k tane fonksiyon uzayında dinamik sistemin kısa ve uzun-vade davranışını ortaya koymakta oldukça etkin bir metottur.

Şekil 1 yörünge metodunu ana hatları ile göstermektedir. Model, gerçek veri ($x_i(t_\alpha)$, $n = 1,2, ..., N$) üzerinde seçilen çeşitli başlangıç koşullarından ($j = 1, 2, ..., j_{max}$) itibaren (2) denklemi kullanır.
Şekil 1 Yörünge metodunun temsili bir faz uzayında grafiksel olarak gösterimi.

Durum değişkenini tahmin etmek için \((t_j + \Delta t_j)\) anlarında model denklemi kullanılır. Farklı başlangıç koşulları için işlem tekrar edilerek bir \(Q\) (kalite fonksiyonu) fonksiyonu elde edilir.

\[
Q = \sum_{j=1}^{i_{\text{max}}} \sum_{l=1}^{l_{\text{max}}} ||x_m(t_j + \Delta t_j) - x_r(t_j + \Delta t_j)||
\]

(4.3) eşitliğinde \(||\) öklik normunu göstermektedir. \(x_r(t_j)\) orijinal yörünge üzerindeki başlangıç koşullarını ve \(x_m(t_j)\) modelin verdiği yörüngeyi göstermektedir. Başlangıçta \(x_r(t_j)\) ve \(x_m(t_j)\) aynıdır.

\(L\), sistemin orta ve uzun-vade davranışını yakalamak için modelin kaç adım çalışacağını belirler. \(\Delta t_i\) ise bu adımlar arasındaki zaman aralığını gösterir. \(\Delta t_i\) aşağıda verildiği gibi hesaplanır:

\[
\Delta t_i = h(2^{-i})
\]

(5)

Bu eşitlikte geçen \(h\) verilerin örneklemeye aralığını göstermektedir. \(c_{i,k}\)'ın optimum değerleri \(Q\)'ın minimizasyonuyla elde edilir.

\[
Q_{\text{min}} = \min_{c_{i,k}} Q \quad (i = 1,2,\ldots,D; \ k = 1,2,\ldots,K)
\]

(6)

(4) eşitliği aşağıda verildiği gibi ifade edilebilir:

\[
Q = \sum_{j=1}^{i_{\text{max}}} \sum_{l=1}^{l_{\text{max}}} \sqrt{\sum_{i=1}^{D} \left[\left(\int_{t_{i-1}}^{t_i+\Delta t_i} \hat{x}_m(\tau)d\tau \right) + x_m(t_j) - x_r(t_j + \Delta t_j) \right]^2}
\]

(7)

(7) denklemindeki integral \([t_j, t_j + \Delta t_j]\) zaman aralıklarında \(x_m(t)\) 'nin değişimini ifade eder ve şu şekilde yazılabilir:
\[t_j + \Delta t_j - x_m(t_j) = c_{i,1} \int_{t_j}^{t_j + \Delta t_j} F_{i,1}(\tau) d\tau + \ldots + c_{i,k} \int_{t_j}^{t_j + \Delta t_j} F_{i,k}(\tau) d\tau \]

(8)

\[\frac{\partial Q}{\partial c_{i,1}} = \left(\sum_{z=1}^{K} c_{i,2} A_{i,z}^{(i)} \right) - B_k^{(i)} = 0 \quad z, k = 1, \ldots, K \]

(9)

Bu eşitlikteki \(A_{i,2}^{(i)} \) matrisi ve \(B_k^{(i)} \) vektörü sırasıyla (3.10) ve (3.11) denklemlerinde verilmiştir.

\[A_{i,2}^{(i)} = \sum_{j=1}^{i_n} \sum_{t=1}^{t_n} \left[\int_{t_j}^{t_j + \Delta t_j} F_{i,k}(\tau) d\tau \right] \left[\int_{t_j}^{t_j + \Delta t_j} F_{i,k}(\tau) d\tau \right] \]

(10)

\[B_k^{(i)} = \sum_{j=1}^{i_n} \sum_{t=1}^{t_n} \left[x_{m}(t_j + \Delta t_j) - x_m(t_j) \right] \left[\int_{t_j}^{t_j + \Delta t_j} F_{i,k}(\tau) d\tau \right] \]

(11)

A matrisi tersinir bir matristir. Böylece yeni \(c_i \) katsayıları bulunarak optimizasyon döngüsü için yeni katsayılar kümesi elde edilir ve sonra bunlar modelde yerine konarak iterasyona devam edilir (Perona ve diğ., 2000).

3. UYGULAMA

Kullanılan Veri

Tablo 1, çalışmada kullanılan verilere ait bazı önemli istatistiksel bilgileri göstermektedir.
Tablo 1. Çalışmada kullanılan verilere ait istatistiksel bilgiler.

<table>
<thead>
<tr>
<th>İstatistik</th>
<th>Buharlaşma (E) (mm)</th>
<th>Rüzgar Hızı (V) (m/s)</th>
<th>Sıcaklık (T) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ortalama</td>
<td>3.77</td>
<td>3.13</td>
<td>19.60</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.00</td>
<td>1.02</td>
<td>4.70</td>
</tr>
<tr>
<td>Maksimum</td>
<td>10.00</td>
<td>10.21</td>
<td>33.30</td>
</tr>
<tr>
<td>Standart Sapma</td>
<td>2.18</td>
<td>1.07</td>
<td>6.56</td>
</tr>
<tr>
<td>Korelasyon Katsayısı</td>
<td>$r_{E,V} = -0.06$</td>
<td>$r_{V,T} = -0.09$</td>
<td>$r_{E,T} = 0.84$</td>
</tr>
<tr>
<td>Çarpi̇klık Katsayısı</td>
<td>0.52</td>
<td>2.15</td>
<td>-0.05</td>
</tr>
</tbody>
</table>

Tabloda verilen $r_{E,V}$, $r_{V,T}$ ve $r_{E,T}$ korelasyon katsayıları sırasıyla buharlaşma-rüzgar hızı, rüzgar hızı-sıcaklık ve buharlaşma-sıcaklık arasındaki korelasyon katsayısını göstermektedir. Buharlaşma'nın rüzgar hızı ve sıcaklıkla ilişkisine bakılarak buharlaşma-sıcaklık ilişkisini oldukça yüksek olduğu korelasyon katsayılardan görülmektedir. Buharlaşma ile sıcaklık arasındaki korelasyon katsayısı $r_{E,T} = 0.84$'dür. Rüzgar hızı ise buharlaşmayı arttırmada sıcaklık kadar etkili değildir.

Verilerin Model Girişi İçin Hazır Hale Getirilmesi

Rüzgar hızları için ortalama alarak yumuşatma diğer verilere oranla daha önemlidir. Çünkü rüzgar hızı çalkantıya çok sahip olan veridir. Her ne kadar verilerde çalkantı azalmış ise de bu şekilde verilerin başlangıç ve bitiş değerleri birbirinden oldukça farklıdır. Rüzgar verisinin daha fazla yumuşatılması gerekmektedir.

Ortalama alınarak yapılan yumuşatma ile bir yandan normaller yakalanırken diğer taraftan çalkantıya neden olan değerler atılır. Böylece daha düzgün bir salının elde edilir. Özellikle çalkantının fazla olması nedeniyle rüzgar verisi için yuvarlatma işlemi önem taşımaktadır.

Verilerin model girişi için hazır hale getirilmesinde ikinci aşama verilerin standartlaştırılmalıdır. Bu da verilerin sıfır ortalama etrafında salınımsını sağlayabilmek ve değişkenleri arasındaki boytuk farklı ortadan kaldırmak için gerekli bir işlemdir. Diğer taraftan değişkenler arasındaki ilişkiyi görmek açısından üç durum değişkeninin de değişimin birlikte gözlenmesi önemlidir.
Şekil 2 buharlaşma, rüzgar hızı ve sıcaklık verisinin birlikte yıllık ortalama değişiminini göstermektedir. Üç veri de sırf ortalama ve birim standart sapmaya sahiptir. Buharlaşma ve sıcaklık arasındaki ilişki şekilde açıkça görülmektedir. Rüzgar hızının değerleriyile olan ilişkisi net olarak görülmektedir.

Buharlaşma ve sıcaklığın değerleri yılın ortasında birlikte artmakta; yılın başında ve sonunda ise birlikte azalmaktadır.

Rüzgar hızı değerlerinin salımnını, buharlaşma ve sıcaklık verilerinin birbirine benzer olun salımnından oldukça farklı bir salımn ortaya koymaktadır. Rüzgar hızının arttığı dönemlerde buharlaşmanın azaldığı görülmektedir. Özetle buharlaşma ile rüzgar hızı arasında lineer bir ilişki görülmektedir.

Şekil 2. Standarlaştırılmış verilerin zaman serisi.

Her ne kadar yıllık ortalama ile veriler yuvarlatılsa da değişkenlerin uzun-vade davranışını yakalayabilme açısından verilerden kısa-vade meteorolojik salımların da çıkarılması gerekmektedir. Bu işlem çalışmanda Fourier analizi ile yapılmıştır.

Şekil 3. Standarlaştırılmış verilerin harmonik analiz ile yumuşatılması sonucu elde edilen zaman serileri.
Fourier analizi ile verilerin ilişkisi daha rahat görülebilir偶尔 (Şekil 3). Fourier analizi sonucu zaman serileri model giriş için hazır hale gelmiş olmaktadır. Şekil 3, üç durum değişkeninin de kendi zaman serilerinin başlangıç ve bitiş değerlerinin eşit olduğu periyodik salınım göstermektedir.

Fourier analizi sonunda elde ettğımız yuvarlanılmış zaman serileri model giriş için orijinal veri olarak dikkate alınacaktır. Sistemin çekicisinin üç boyutlu faz uzayındaki görüntüşi Şekil 4 de verildiği gibidir.

Şekil 4, buharlaşma (x_1), rüzgar hızı (x_2) ve sıcaklık (x_3) verilerinin çekicisini üç boyutlu olarak göstermektedir. Bu çekicinin yörüngeyi kendi herhangi bir noktada kesmemektedir.

Şekil 4. Orijinal verilerin çekicisi.

Modelin Çalıştaları Durum Sistemin Elde Edilmesi

Tablo 2. Yöringe metodu ile elde edilen diferansiyel denklem sisteminin katsayıları.

<table>
<thead>
<tr>
<th>Katsaylar</th>
<th>Değerler</th>
<th>Katsaylar</th>
<th>Değerler</th>
<th>Katsaylar</th>
<th>Değerler</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{1.1})</td>
<td>0.0052</td>
<td>(c_{2.1})</td>
<td>0.0072</td>
<td>(c_{3.1})</td>
<td>0.0020</td>
</tr>
<tr>
<td>(c_{1.2})</td>
<td>0.0700</td>
<td>(c_{2.2})</td>
<td>-0.0114</td>
<td>(c_{3.2})</td>
<td>0.0643</td>
</tr>
<tr>
<td>(c_{1.3})</td>
<td>-0.0280</td>
<td>(c_{2.3})</td>
<td>0.0189</td>
<td>(c_{3.3})</td>
<td>-0.0389</td>
</tr>
<tr>
<td>(c_{1.4})</td>
<td>-0.0750</td>
<td>(c_{2.4})</td>
<td>0.0128</td>
<td>(c_{3.4})</td>
<td>-0.0671</td>
</tr>
<tr>
<td>(c_{1.5})</td>
<td>-0.0470</td>
<td>(c_{2.5})</td>
<td>-0.0487</td>
<td>(c_{3.5})</td>
<td>-0.0228</td>
</tr>
<tr>
<td>(c_{1.6})</td>
<td>-0.0195</td>
<td>(c_{2.6})</td>
<td>-0.1063</td>
<td>(c_{3.6})</td>
<td>0.0096</td>
</tr>
<tr>
<td>(c_{1.7})</td>
<td>0.0316</td>
<td>(c_{2.7})</td>
<td>0.0400</td>
<td>(c_{3.7})</td>
<td>0.0166</td>
</tr>
<tr>
<td>(c_{1.8})</td>
<td>0.0282</td>
<td>(c_{2.8})</td>
<td>0.0588</td>
<td>(c_{3.8})</td>
<td>0.0058</td>
</tr>
<tr>
<td>(c_{1.9})</td>
<td>0.0163</td>
<td>(c_{2.9})</td>
<td>0.0101</td>
<td>(c_{3.9})</td>
<td>0.0088</td>
</tr>
<tr>
<td>(c_{1.10})</td>
<td>-0.0200</td>
<td>(c_{2.10})</td>
<td>0.0357</td>
<td>(c_{3.10})</td>
<td>-0.0201</td>
</tr>
<tr>
<td>(c_{1.11})</td>
<td>-0.0071</td>
<td>(c_{2.11})</td>
<td>0.2207</td>
<td>(c_{3.11})</td>
<td>-0.1249</td>
</tr>
<tr>
<td>(c_{1.12})</td>
<td>-0.0066</td>
<td>(c_{2.12})</td>
<td>-0.1157</td>
<td>(c_{3.12})</td>
<td>0.0522</td>
</tr>
<tr>
<td>(c_{1.13})</td>
<td>0.0888</td>
<td>(c_{2.13})</td>
<td>-0.1663</td>
<td>(c_{3.13})</td>
<td>0.1129</td>
</tr>
<tr>
<td>(c_{1.14})</td>
<td>0.0127</td>
<td>(c_{2.14})</td>
<td>0.0725</td>
<td>(c_{3.14})</td>
<td>-0.0333</td>
</tr>
<tr>
<td>(c_{1.15})</td>
<td>-0.0045</td>
<td>(c_{2.15})</td>
<td>-0.0650</td>
<td>(c_{3.15})</td>
<td>0.0383</td>
</tr>
<tr>
<td>(c_{1.16})</td>
<td>-0.1212</td>
<td>(c_{2.16})</td>
<td>0.1367</td>
<td>(c_{3.16})</td>
<td>-0.1309</td>
</tr>
<tr>
<td>(c_{1.17})</td>
<td>0.0161</td>
<td>(c_{2.17})</td>
<td>-0.1028</td>
<td>(c_{3.17})</td>
<td>0.0759</td>
</tr>
<tr>
<td>(c_{1.18})</td>
<td>-0.0206</td>
<td>(c_{2.18})</td>
<td>0.0605</td>
<td>(c_{3.18})</td>
<td>-0.0321</td>
</tr>
<tr>
<td>(c_{1.19})</td>
<td>-0.0061</td>
<td>(c_{2.19})</td>
<td>-0.0176</td>
<td>(c_{3.19})</td>
<td>0.0077</td>
</tr>
<tr>
<td>(c_{1.20})</td>
<td>0.0482</td>
<td>(c_{2.20})</td>
<td>-0.0288</td>
<td>(c_{3.20})</td>
<td>0.0459</td>
</tr>
</tbody>
</table>

Şekil 5, buharlaşma (\(x_1\)), rüzgar hızı (\(x_2\)) ve sıcaklık (\(x_3\)) durum değişkenlerine ait çekiciyi göstermektedir. Buharlaşma \(x_1\) eksenı, rüzgar hızı \(x_2\) eksenı ve sıcaklık \(x_3\) ekseniyile gösterilir. Çekiçinın yördüğü kendi kendini herhangi bir naktada kesmemektedir.
4. SONUÇLAR

Yukarıda adı geçen istasyonun verilerinin kullanılmasını nedeni buharlaşmaının dinamğini tam olarak ortaya koyabilmek için sürekli verilere olan gereksinidadır. Değişkenler tipik yıllık ortalama davranışları elde edilerek normalleştirilmiştir. Bu şekilde elde edilen seriden kisa-vade salınmalar Fourier analizi yapılarak çıkarılmıştır. Sonuç seriyeye yörunge metodu uygulanarak diferansiyel denklem sisteminin katsayları elde edilmiştir.

Bu şekilde elde edilen dinamik sistemin çekici olarak orijinal sistemin çekicisi arasındaki fark ihmal edilebilecek düzyedir. Gerçek buharlaşma değerleri ile modelin vermişi olduğu buharlaşma değerleri arasındaki hata 0.0005’tir. Bu hata değeri 4. mertebeden Runge-Kutta algoritmaların hata sınırları içerisindedir.

Elde edilen dinamik sistem kullanılarak süreç hakkında önemli bilgiler ortaya konabilir. Örneğin, değişkenler arasındaki etkileşimler ve nonlinearlık derecesi hakkında önemli
bilgiler elde edilebilir, sistemin kararlılık özellikleri incelenebilir, parametrelerde meydana gelen değişimlere ve dış zorlamalara karşı modelin tepkisi incelenebilir ve elde edilen model öngörü amacına yönelik olarak kullanılabilir.

KAYNAKLAR

