DEPREM ETKİSİNDEKİ BETONARME BİNALARIN GÖÇME RISKİNİN SAPTANMASI İÇİN HIZLI DEĞERLENDİRME YÖNTEMLERİ

YÜKSEKLİSANS TEZİ

Mecit ALTINER

Anabilim Dalı: İNŞAAT MÜHENDİSLİĞİ

Programı: YAPI YÜKSEK LİSANS PROGRAMI

EYLÜL 2008
DEPREM ETKİSİNDEKİ BETONARME BİNALARIN GÖÇME RİSKİNİN SAPTANMASI İÇİN HIZLI DEĞERLENDİRME YÖNTEMLERİ

YÜKSEK LİSANS TEZİ

Mecit ALTINER

(509022001)

Tezin Enstitüye Verildiği Tarih: 23 Eylül 2008
Tezin Savunulduğu Tarih: 07 Ekim 2008

Tez Danışmanı: Yard. Doç. Dr. Erdal COSKUN
Diğer Jüri Üyeleri: Yard. Doç. Dr. Murat TÜRK
Yard. Doç. Dr. Cem YALÇIN (B.Ü.)

EYLÜL 2008
ÖNSÖZ

Son olarak çalışmalarında yardımlarını esirgemeyen Yard Doç. Dr. Cem YALÇIN’a ve Yard. Doç. Dr. Murat TÜRK’e, yüksek lisans eğitimim boyunca her zaman desteğini üzerinden eksik etmeyen, tez danışmanım Yard. Doç. Dr. Erdal COŞKUN’a teşekkür ederim.

Eylül 2008

Mecit Altuner
İÇİNDEKİLER

ÖNSÖZ ... ii
KISALTMALAR .. v
TABLO LİSTESİ ... vi
ŞEKİL LİSTESİ ... vii
SEMBOL LİSTESİ ... viii
ÖZET ... xi
SUMMARY ... xiii

1. GİRİŞ .. 1

1.1. Çalışmanın Amacı ve Kapsamı ... 2

2. KONU İLE İLGİLİ YAPILMIŞ OLAN ÇALIŞMALAR ... 3

2.1. Kanada Sismik Tarama Yöntemi ... 3
2.2. Japon Sismik İndeks Yöntemi .. 6
2.3. P25 Yöntemi ... 9

2.3.1. Kritik Kat Seçimi ... 12
2.3.2. ĈA En Kesit Alanı Endeksi Bileşkesi .. 12
2.3.3. ĈI Atalet Momenti Endeksi Bileşkesi .. 13
2.3.4. P₀ - Taşıyıcı Sistem Puanı .. 14
2.3.5. P₁ - Temel Yapısal Puanı ... 16
2.3.6. P₂ - Kısa Kolon Puanı .. 16
2.3.7. P₃ – Yumuşak Kat ve Zayıf Kat Puanı ... 17
2.3.8. P₄ – Çıkmalar ve Çerceve Süreksizliği Puanı .. 18
2.3.9. P₅ – Çarpışma Puanı .. 18
2.3.10. P₆ – Sıvılaşma Potansiyeli .. 19
2.3.11. Pγ – Toprak Hareketleri Puanı. ... 20
2.3.12. α – Düzeltme Çarpanı. .. 22
2.3.13. β – Düzeltme Çarpanı. .. 22
2.3.14. P Sonuç Puanı. ... 23
2.4. Kapasite - Talep Oranı Yöntemi .. 23

3. ÖRNEK BİNA BİLGİLERİ VE ÖRNEK BİNA KULLANILARAK DAHA ÖNÇEDEN YAPILMIŞ ÇALIŞMA VE SONUÇLARI .. 41

4. SEÇİLEN HIZLI DEĞERLENDİRME YÖNTEMLERİ İLE ÖRNEK BİNANIN İNCELENMESİ ... 49
 4.1. Kapasite-Talep Oranı Yöntemi ile Örnek Binanın İncelenmesi 49
 4.2. Japon Sismik İndeks Yöntemi ile Örnek Binanın İncelenmesi 52
 4.3. Kanada Sismik Tarama Yöntemi ile Örnek Binanın İncelenmesi 54
 4.4. P25 Yöntemi ile Örnek Binanın İncelenmesi .. 55

5. SONUÇLAR ... 60

KAYNAK ... 63
KISALTMALAR

YDG : Yeterli Deprem Güvenliği
DÖB : Düşük Öncelikli Binalar
OÖB : Orta Öncelikli Binalar
YÖB : Yüksek Öncelikli Binalar
ÇTB : Çok Tehlikeli Binalar
AB : Avrupa Birliği
TÜBİTAK : Türkiye Bilimsel ve Teknolojik Araştırma Kurumu
İTÜ : İstanbul Teknik Üniversitesi
YASS : Yer altı Su Seviyesi
AIJ : Japonya Mimarlık Enstitüsü
BA : Betonarme
DBYBHY : Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik
TABLO LISTESİ

Tablo 2.1 : Yapısal Düzensizlik Katsayları .. 15
Tablo 2.2 : P2-Kısa Kolon Puanlama Matrisi .. 17
Tablo 2.3 : P4 - Çıkma ve Çeşeye Süreksizliği Puanı .. 19
Tablo 2.4 : P5 - Çarpışma Puanı Matrisi ... 21
Tablo 2.5 : P6 - Sıvılama Potansiyeli Puanları ... 21
Tablo 2.6 : P7 - Çıkma ve Çeşeye Süreksizliği Puanı ... 21
Tablo 2.7 : Çeşitli Puanlar için Ağırlık Oranları .. 23
Tablo 2.8 : Periyod formüllerinde kullanılacak C1 ve C2 sabit katsayılar 26
Tablo 2.9 : Periyod ve görel kat öteleneme talebi değerleri 28
Tablo 2.10 : Hızlı Değerlendirme Yöntemlerinde Dikkate Alınan Parametreler 40
Tablo 3.1 : İncelenen Binaya Ait Kolonların Yapısal Özellikleri 43
Tablo 4.1 : Kapasite-Talep Oranı Yöntemi Değerleri .. 51
Tablo 4.2 : Japon Sismik İndeks Yöntemi Değerleri ... 53
Tablo 4.3 : Kanada Sismik Tarama Yöntemi Değerleri 55
Tablo 4.4 : P25 Yöntemi Değerleri ... 58
Tablo 5.1 : Örnek Bina İçin Sonuçlar Tablosu ... 62
ŞEKİL LİSTESİ

Şekil 2.1 : Kritik Kat Alanı .. 11
Şekil 2.2 : Geçmiş Depremlerden Hasar Örnekleri ... 19
Şekil 2.3 : Ağır Çıkmalar ve Oluşturulan Çerçeve Süreksizlikleri 20
Şekil 2.4 : β -Katsayısının Değişimi ... 23
Şekil 2.5 : Betonarme Bina Modelleri .. 25
Şekil 2.6 : Kolonların Yatay Ötelenme ve Süneklik Kapasiteleri ρ1=%1 37
Şekil 3.1 : İncelenen Binaya Ait Zemin Kat Kalıp Planı .. 42
Şekil 3.2 : SBG İndekslerinin Karşılaştırılması .. 44
Şekil 3.3 : Katların En Büyük (Sol) ve Göreli (Sağ) Yer Değiştirmeleri 45
Şekil 3.4 : Yapıda Sakarya Kaydı Etkisinde Oluşan Plastik Mafsallar 46
Şekil 4.1 : Seçilen Kolon İçin Ötelenme ve Süneklik Kapasite Grafikleri 50
Şekil 5.1 : Göreli Katlar Arası Ötelenme Talebi ... 61
SEMBOL LİSTESİ

A : Bölgenin Depremserelliği
B : Zemin Koşulları
C : Taşıyıcı Sistem Türü
D : Döşeme Sistemi
E : Binada Varolan Düzensizlikler
F : Binayi Kullanan İnsan Sayısına Bağlı Bina Önem Sayısı
SI : Yapısal İndeks
G : Binanın Genel Durumu
H : Binanın Yapısal Olmayan Bileşenleri
NSI : Binanın Yapısal Olmayan İndeksi
R : Taşıyıcı Sistem Davranış Katsayısı
Is : Deprem performansını gösteren indeks
Is0 : Karşılaştırma indeksi
Es : Ana karşılaştırma indeksi
Z : Bölge katsayısı
G : Zemin katsayısı
U : Kullanım katsayısı
E0 : Ana yapısal performans indeksi
S0 : Yapının fiziksel özelliklerine ve geometrisine göre belirlenen katsayı
T : Zamana bağlı oluşan etkilere göre belirlenen katsayı
n : Bodrum kat hariç olmak üzere toplam kat sayısı
i : Göz önüne alınan kat
Cw : Perdelerin taşıma gücü
Cc : Kolonların taşıma gücü
Fw : Perde sünekliğine bağlı katsayı
a1 : Yer değiştirme uyum katsayısı
Ccs : Kısa kolonların taşıma gücü
F_{CS} : Kısa kolon sünkeliğine bağlı katsayı
A_{W1} : İki tarafından başlıklı perdelerin toplam en kesit alanı
A_{W2} : Bir tarafından başlıklı perdelerin toplam en kesit alanı
A_{W3} : Başlıklıksız perdelerin toplam en kesit alanı
F_{cd} : Beton basınç dayanımı
W : Göz önune alınan kat üzerindeki bina ağırlığı
A_{c} : Toplam en kesit alanı
a_{sc} : Kısa kolonların toplam en kesit alanı
P_{1} : Temel yapısal puanı
P : Sonuç puanı
P_{w} : Ağırlıklı ortalama puan
A_{e} : Efektif kat alanı
C_{a} : En kesit alanı endeksi bileşkesi
A_{as} : Kritik kattaki betonarme perde duvarların en kesit alanları toplamı
A_{awx} : Kritik kattaki dolgu duvarların en kesit alanları toplamı
E_{m} : Dolgu duvarı elasitesite modülü
E_{c} : Beton elasitesite modülü
C_{A} : Alan endeksi bileşkesi
C_{I} : Atalet momenti endeksi bileşkesi
I_{x} ve I_{y} : Bina taban alanını içine alan dikdörtgenin x ve y yönündeki atalet momentleri,
I_{cx} ve I_{cy} : Kritik kat kolonlarının x ve y yönüne göre atalet momentleri toplamı,
I_{sx} ve I_{sy} : Kritik kat perdelerinin x ve y yönüne göre atalet momentleri toplamı,
P_{o} : Taşıyıcı sistem puanı
h_{o} : Bina yüksekliği ile ilgili bir düzeltme çarpanı
H : Bina toplam yüksekliği
f_{i} : Yapısal düzensizlik katsayıları
P_{1} : Temel yapısal puanı
P_{2} : Kısa kolon puanı
P_{3} : Yumuşak kat ve zayıf kat puanı
P_{4} : Çıkmalar ve çerçeve süreksizliği puanı
P_{5} : Çarpışma puanı
\(P_6 \) : Sıvılaşma potansiyeli
\(P_7 \) : Toprak hareketleri puanı
\(I_{can} \) : Kapasite hesabında kullanılan kolon boyu
\(I_{y,y} \) : Kesit eylemsizlik momenti
\(M_{cr} \) : Kolonun çatlama momenti
\(M_y \) : Kolonun akma momenti
\(M_u \) : Kolonun taşıma gücü momenti
\(N \) : Kolona etkiyen eksenel kuvvet
\(S_{BG} \) : Depreme dayanıklılık indeksi
\(n \) : Hareketli yük çarpanı
\(t \) : Topografik konum katsayısı
\(w \) : Ağırlık katsayısı
\(\mu \) : Yer değiştirme sünekliği
\(\rho \) : Donatı oranı
DEPREM ETKİSİNDEKİ BETONARME BİNALARIN GöÇME RİSKİNİN SAPTANMASI İÇİN HIZLI DEĞERLENDİRME YÖNTEMLERİ

ÖZET

Son yıllarda Türkiye’de meydana gelen depremler, insanların içinde yaşam faaliyetlerini devam ettirdikleri yapı stoğunun deprem karşısında ayak kalıp kalmayacağına dair durumunu tespit etme ihtiyacını ortaya çıkarmıştır.

Deprem kuşağı üzerinde olan Türkiye’de, binaların deprem risklerinin bilinmesi için gerekli olan çalışmaların zaman ve maliyet gerektirdiği görülmüştür. Bu çalışmaların kısa zamanda az maliyetle yürütülebilmesi için çeşitli hızlı değerlendirme yöntemleri ortaya konulmuştur.

Bu tez çalışmasında betonarme binaların göçme riskinin saptanabilmesi için mevcut hızlı değerlendirme yöntemlerinden 4 ayrı yöntem seçilmiştir. Seçilen yöntemler, 1999 Kocaeli depreminde orta hasarlı örnek bir binaya uygulanmıştır. Örnek binanın orta hasar durumunu ile örtüşen en uygun yöntem belirlenmeye çalışılmıştır. Beş bölümde sunulan çalışmanın birinci bölümünde konuya giriş yapılmıştır.

Çalışmanın ikinci bölümünde konu ile ilgili önceden yapılmış 4 ayrı hızlı değerlendirme yöntemi anlatılmaktadır. Üçüncü bölümde önceden yapılmış bir çalışmadan bahsedilmektedir. Burada konu ile ilgili önceden yapılmış değerlendirme yöntemleri ile göçme riskinin saptanacağı örnek bina bilgileri verilmekte olup, örnek
binanın Japonya Mimarlık Enstitüsü - S_{BG} indeksleri ile deprem kapasitesi incelenmektedir. Ayrıca örnek binanın doğrusal olmayan dinamik ve statik çözümlemesinden ve sonuçlarından bahsedilmektedir. Çalışmanın dördüncü bölümünde ikinci bölümde anlatılan 4 ayrı hızlı değerlendirme yöntemi üçüncü bölümde bilgileri verilen örnek bina üzerinde uygulanmaktadır.

RAPID ASSESSMENT METHODS for DETECTION OF THE RISK OF COLLAPSE OF THE REINFORCED CONCRETE BUILDINGS AFFECTED FROM EARTHQUAKE

ABSTRACT

Due to the recent destructive earthquakes in Turkey, the need has arisen to determine whether existing building stock in which our people continue their lives will survive an earthquake.

It has been seen that in Turkey, which exists on the seismic belt that efforts necessary to know earthquake risks of the buildings require time and cost. Various methods were developed to pursue such works within the shortest time and at minimum cost.

In this thesis, four different methods of rapid assessment were selected, those were developed to detect the risk of collapse of the reinforced concrete buildings. The selected methods were applied on a building with a medium damage after by 1999 Kocaeli earthquake. The most appropriate method corresponding to the medium damage of the example building was determined. An introduction to the subject was made in the first chapter of this study submitted in five chapters.

In the second chapter of the study, four different rapid assessment methods developed here explained. In the third chapter, some information is provided about a study made previously. Information is provided on sample building collapse risk of which are to be determined using the previously developed evaluation methods related to the subject, and the earthquake capacity of the sample building with Japan Architectural Institute – S\textsubscript{BG} indexes is examined. Besides, nonlinear dynamic and
static solutions and results of the example building are given. In the fourth chapter of the study, the four different rapid assessment methods are explained in the second chapter are applied on the given example building.

In the conclusion most appropriate method for the given method corresponding to the medium damage of the example building was determined. Its compliance with the nonlinear static and dynamic analyses is compared.

Besides, a further study suggestion was mentioned for classification of the reinforced concrete buildings in Turkey according to their earthquake performance.
1. GİRİŞ

17 Ağustos 1999 depreminden sonra herkes tarafından gündeme getirilen yapıları güçlendirme seferberliği ile deprem tehlikesi altında bulunan bütün binaları yeni deprem yönetmelikleri ile güçlendirmenin zaman alacağı, ekonomik yükler doğuracağı anlaşılmıştır. Bu durum yurt içi ve yurt dışında Deprem Mühendisliği alanında çalışan birçok bilim adamları, olası bir depremden sıfır can kaybı ile çıkma yollarını aramaya yöneltmişlerdir.

Bu tez çalışmasında betonarme binaların göcme riskinin saptanması için geliştirilmiş 4 ayrı hızlı değerlendirmeye yönteminden, 17 Ağustos 1999 depreminde orta hasar görmüş betonarme bir binanın yapısal davranışının incelenmesinden ve gerçekten karşılaştılan orta hasar düzeyinin yapılan çözümlemeler ile karşılaştırılmasından bahsedilmektedir. Daha sonra orta hasar görmüş betonarme bina bu çalışmada bahsedilen 4 ayrı hızlı değerlendirme yöntemi ile değerlendirilmiş ve sonuçlar karşılaştırılmıştır.
1.1 Çalışmanın Kapsamı ve Amacı

Seçilen 4 ayrı hızlı değerlendirme yöntemi örnek bina üzerinde uygulanmaktadır. Uygulanan yöntemlerin sonuçları ve önceden yapılmış çalışmanın sonuçları karşılaştırılmıştır.

Çalışmanın amacı, kapsamı doğrultusunda bina stoğunda bulunan çok sayıda binanın göçme riskinin saptanması için seçilen yöntemlerde en uygun hızlı değerlendirme yöntemi bulmaktır. Doğrusal olmayan statik ve dinamik çözümlemelerle uyumluğunu karşılaştırmaktır. Ayrıca Türkiye’deki betonarme binaların deprem performanslarına göre sınıflandırılmasına yönelik ileri çalışma önerisinden bahsedilmektedir.
2. KONU İLE İLGİLİ YAPILMIŞ OLAN ÇALIŞMALAR

2.1. Kanada Sismik Tarama Yöntemi

İncelenecek binadan olabildiğince bilgi toplamak doğru karar verebilmek için önemlidir. Bu amaçla hazırlanmış formda bilgilerin yer verilmiştir. Her bir bilgi sayısı bir değerlendirme karışırmaktadır. Binanın adresi, posta kodu, kat sayısı, yapım yılı, projelendirme yılı, toplam bina kullanım alanı, bina ismi, değerlendirme yapanın ismi, değerlendirme tarihi, binanın çevresiyile ilişkisini gösteren şematik bir plan, binanın tipik bir fotoğrafı, varsa tipik kat planı ya da kalıp resmi, yapımda kullanılan taşıyıcı sistem malzemesi (ahşap, çelik, betonarme, yığma gibi), taşıyıcı sisteme zaman içinde...
yapılan müdahale, bozulmalar, beklenen maksimum yer ivmesi ve hızını içeren bölgenin depremselliğ (A), zemin koşulları (B), taşıyıcı sistemün türü (C), düşme sistemi (D), binada varolan düzensizlikler (E), binayı kullanan insanların sayısına bağlı bir bina önem sayısı (F) gibi parametreler sayısallaştırılmış ve yapısal indeks (SI) olarak aşağıdaki biçimde tanımlanmıştır [1].

\[
SI = ABCDEF
\]

(2.1)

Binanın genel durumu (G) ve yapısal olmayan bileşenleri (H) de dikkate alan yapısal olmayan indeks (NSI) ise;

\[
NSI = BFGH
\]

(2.2)

bağıntısı yardımıyla hesaplanır. Yapısal ve yapısal olmayan indekslerden sismik öncelik indeksine

\[
SPI = SI + NSI
\]

(2.3)

bağıntısıyla geçilebilir. Bu sayısal verilerin dışında, incelenen bina ile ilgili yorumlar da forma alınabilecektir.

A, B, C, D, E, F, G, H katsayılarının alabileceği sayısal değerlerin üst ve alt sınırları değerlendirme sonuçları bakımından önemlidir. Depremselliğin faktörü olarak da tanımlanabilecek A değeri 1-5 arasında değişmektedir; yüksek A değerleri daha riskli bölgelere karşılık gelmektedir. Zemin koşulu faktörü B kaya ve çok sağlam zeminlerde 1.0, sıvılaşma potansiyeli yüksek, çok zayıf zeminlerde 1.5 değerini almaktadır. Taşıyıcı sistem ilgili olan C katsayısı, depreme dayanıklı tasarım ilkeleri doğrultusunda tasarlanmış sünek sistemlerde düşük, tersi sistemlerde yüksek değer almaktadır; örneğin 1.0 sünek olarak detaylandırılmış bir taşıyıcı sisteme karşılık gelirken 3.5 gevrek sistemlere karşı gelmektedir. Bu değerlerin taşıyıcı sistem davranış katsayısına (R) benzerlik gösterdiğini söyleyebilir; ancak farklı bir yorumu vardır. Düşme sisteminne bağlı olan D katsayısı 1-2 arasında değişmektedir; hafif ve diyafram özelliği gösteren düşme sistemlerinde bu katsayı düşüktür. Yapısal düzensizlikle ilgili bir faktör olan E hasar görebilibiliği çok etkilemekte olup binada her bir düzensizliğe karşı gelen puanlar vardır; tanımlanan düzensizlikler ilgili deprem yönetimmeliklerden farklıdır. Bunlar değişte düzensizlik, burulma düzensizliği, kısa
kolonlar, yumuşak kat, çekiciyleme etkisi, bina taşıyıcı sistemindeki proje dışi önemli değişiklikler ve değişik türde yapışal hasar oluşumlarıdır. Yapışal düzensizliklerin çoğunun mimari proje kaynaklı olduğu bilinmekle, uygun mimari projelerde düzensizliklerin en aza indirilmesi olanaklı olmaktadır. Binada gözlenen her bir düzensizliğe 0.3 ile 1.0 arasında değer verilmektedir. Binada gözlenen her bir düzensizlik, komşu binaların çarpışması, sistemde yapılan değişiklikler ve hasara, en büyük/olumsuz katsayı ise yumuşak kat oluşumuna verilmektedir. Enin üstten sınırlandırılması da önerilirken, gerçekte böyle bir bina ömrü sorunlar içermektedir. Binanın önemi ile ilgili olan F katsayısi binada yaşayanların sayısına (N) bağlıdır; içinde 10 kişiden az insan barındıran binalarda (düşük önem düzeyi) 0.7, 10-300 arasında (normal önem düzeyi) 1.5, 300-3000 arasında (okul ve yüksek önem düzeyi) 2.0, 3000'den fazla (deprem sonrası hemen kullanım ve çok yüksek önem düzeyi) olması durumunda 3.0 alınmaktadır. Binanın bugünkü durumunu simeleyen G katsayısi ise en iyi / sorunsuz durumda 1.0, çök sorunlu durumda 4.0 ile hesaba sokulmaktadır.

Yapışal olmayan faktörler H ile gösterilmekte, çıkış ve kaçış yollarının etkileyecek bina dışında serbestçe bulunan parapetler ve bacalar ile bina içindeki yımlama kagırdı duvarları, mekanik ve elektrik ekipmanları ile raflar gibi bileşenlerden oluşmaktadır. Varolan her bir iç ve dış bileşen için 1.0 puan verilmektedir [1].

Bina ile ilgili inceleme tamamlandıktan sonra bir sonraki aşama için elde dilen sayisal sonuçların değerlendirilmesi yapılır. Bu aşamada öncelikli olarak hesaplanan indekse göre bir sralama yapmakta. İndeksin yüksek olması öneminin yüksek olması gerektiği anlama gelir. Öncelik sralamasında üç indeksten (SI, NSI, SPI) biri kullanılıbileceği gibi binanın ve bölgenin deprenselliği dikkate alınarak yalnızca biri de seçilebilir. Örneğin, deprem riski düşük bölgelerde yapışal olmayan hasarların değerlendirilmesi daha önmeli olabilir. Diğer önmeli bir karar da herhangi bir indeksin küçük çıkması durumunda o binanın değerlendirime kapsamına alınıp alınmamasına karar vermektir. Öncelik sralamasında kullanılabilecek sır değerlerin belirlenmesi bina için ayrılan bütçeyi doğrudan etkilediğinden, güç olmakla birlikte, varsayılan bazı değerler karşı geldiği öncelik düzeyleri ile aşağıda verilmiştir:
SI ya da NSI 1.0~2.0 yeterli deprem güvenliği (YDG)
SPI <10 düşük öncelikli binalar (DÖB)
SPI 10~20 orta öncelikli binalar (OÖB)
SPI >20 yüksek öncelikli binalar (YÖB)
SPI >30 çok tehlikeli binalar (ÇTB)

2.2. Japon Sismik İndeks Yöntemi

Betonarme çerçeve, perde- çerçeve veya sadece perdelendenden oluşan taşıyıcı sisteme sahip bina türü yapılara uygulanabilen Sismik İndeks Yöntemi, söz konusu türlerdeki binaların deprem güvenliğinin hızlı şekilde tahmin edilmesi amacı ile kullanılır. Yöntem giderek daha gerçekçi sonuç veren ve daha çok zaman alan üç aşamadan oluşmakla birlikte, bu çalışmada sadece hızlı değerlendirme yöntemi ve detaylı yapsal çözümleme sonuçlarının karşılaştırılması amacıyla yöntemin yalnızca birinci aşamasy ile ilgili bilgi verilmiştir. Bu yöntemin 30 yaşın üzerindeki, büyük fiziksel bozuklukları bulunan, malzeme dayanımı düşük olan veya taşıyıcı sistemi alışılmışın dışında olan binalarda kullanılması önerilmemektedir [2]. İncelemenin ilk aşaması yapıın taşıyıcı sisteminin, yaşının ve fiziksel durumunun incelenmesini içerir. Bu incelemeler sonucu elde edilen veriler ışığında yapının deprem performansını gösteren indeks IS belirlenir. IS indeksi ile yapı için göz önüne alınması uygun olan karşılaştırma indeksi IS0 karşılaştırılacak yapının deprem güvenirliği tahmin edilir. Bu karşılaştırma tüm kritik katlar ve iki asal deprem doğrultusu için ayrı ayrı yapılır. IS>IS0 olduğunda yapının depreme karşı güvenli olduğunu, tersi durumda (IS<IS0) ise
yapının deprem güvenliğinin belirsiz olduğu sonucuna ulaşılır. Ayrıca I/ I₀<0.4 ise yapının depreme karşı güvenliğinin ayrıntılı incelenmesi gerekmektedir. Burada deprem güvenliği yapının hasar görmeyeceği anlamında değil, toptan göçmenin oluşmayacağı anlamında kullanılmaktadır [6].

Karşlaştırma indeksi I₀ (2.4) bağıntısı ile hesaplanabilir. Bu bağıntıda Eₘ ana karşlaştırma indeksinin birinci düzey inceleme için 0.80 alınması önerilmektedir. Z bölge katsayısı deprem riskinin yüksek olduğu bölgelerde genel olarak 1.00 alınmakla birlikte, binanın bulunduğu bölginin depremselliğine göre azaltılabilir, ancak Z katsayısının hiç bir zaman 0.70'den küçük alınmaması önerilmektedir. G zemin katsayısı, zemin büyümesi oluşturacak nitelikte zemin durumuna ve topografik koşullara ilgili olan büyüklüğü. G katsayısı zemin durumuna göre 1.00 ile 1.10 arasında değişen değerler alabilmekte olup, zemin koşulları kötülüğe G katsayısının değeri de büyümektedir. U kullanım katsayısı yapının önemi ve kullanımla ilgili olan nitelikte. Her yapı için yapının önem derecesi ve deprem sonucu oluşabilecek etkilerin boyutu da göz önune alınarak özel olarak belirlenmelidir. Deprem sırasında insanların barınak olarak kullanacağı yerler, tehlikeli madde depoları gibi yapılarda U katsayısının 1.25, konut ve benzeri yapılarda 1.0 olarak alınması önerilmektedir.

\[I₀ = Eₘ * Z * G * U \]

(2.4)

Performans indeksi Iₜ (2.5) bağıntısı ile hesaplanabilir. Bu bağıntıda E₀ ana yapısal performans indeksi, S₀ yapının fiziksel özelliklerine ve geometrisine göre belirlenen katsayı, T ise zaman bağılı oluşan etkilere göre belirlenen katsayıdır. E₀ indeksinin hesaplanmasında kullanmak üzere yapıdaki düşey taşıyıcı elemanlar kolon, kısa kolon ve perde olarak 3 grupta incelenmektedir. Eleman temiz yüksekliğinin, kesit derinliği orani 2'den büyük olan düşey taşıyıcı elemanlar (h₀/D>2) kolon, eleman temiz yüksekliğinin, kesit derinliği orani 2'den küçük veya eşit olan düşey taşıyıcı elemanlar (h₀/D<2) kısa kolon, olarak adlandırılmaktadır [6].

\[Iₜ = E₀ * S₀ * T \]

(2.5)
(2.5) bağıntısında kullanılan \(E_0 \) indeksenin hesaplanma yöntemi yapında kısa kolon bulunması veya bulunmaması durumlarında farklılık göstermektedir. \(E_0 \) indeksi yapında kısa kolon bulunmaması durumunda (2.6) bağıntısı ile, bulunması durumunda ise (2.7) bağıntısı ile hesaplanmaktadır. Bu bağıntılarda \(n \), bodrum kat hariç olmak üzere toplam kat sayıdır, \(i \) göz önüne alınan katı, \(C_W \) perdelerin taşma gücünü, \(C_C \) kolonların taşma gücünü, \(F_W \) perde sünekliğine bağlı katsayıyı ifade etmekte olup bu bağıntıda 1.0 olarak gözönüne alınabilir, \(a_1 \), yerdeğiştirme uyum katsayısını belirtmektedir ancak \(C_W=0 \) ise \(a_1=0.70 \); \(C_W \neq 0 \) \(\& C_C=0 \) ise \(a_1=0.50 \) alınabilir [6].

\[
E_0=\left(\frac{n+1}{n+i}\right) \times (C_W+a_1 C_C) \times F_W \tag{2.6}
\]

\[
E_0=\left(\frac{n+1}{n+i}\right) \times (C_W+a_2 C_W+a_3 C_C) \times F_{SC} \tag{2.7}
\]

Yapıda kısa kolon varsa \(E_0 \) indeksi hesaplanırken kısa kolonların taşma gücünü göz önünde bulunduran bağıntı (2.7) ile kısa kolonların taşma gücünü ihmal eden bağıntı (2.6)dan büyük olanı alınmalıdır. Ancak, kısa kolonlarda meydana gelecek göçme sonucunda, toptan göçme veya can güvenliğini tehdit eden bir durum oluşması olası ise, \(E_0 \) indeksi her zaman bağıntı (2.7) ile hesaplanmalıdır.

Perdelerin taşma gücü \(C_W \) (2.8) bağıntısı ile hesaplanabilir. Bu bağıntıda \(A_W1 \) iki tarafından başlıklı perdelerin toplam enkesit alanı (\(\text{cm}^2 \)), \(A_W2 \) bir tarafından başlıklı perdelerin toplam enkesit alanı (\(\text{cm}^2 \)), \(A_W3 \) başlıklı alıp perdelerin toplam enkesit alanı (\(\text{cm}^2 \)), \(f_{cd} \) beton basınç dayanımını (kgf/cm\(^2\)), \(W \) göz önüne alınan kat üzerindeki bina ağırlığını (kgf) ifade etmekteidir. Kolonların taşma güçlü (2.9) bağıntısı ile hesaplanabilir. Bu bağıntıda \(A_{c1} \) eleman temiz yüksekliği/kesit derinliği<6 olan kolonların toplam enkesit alanı (\(\text{cm}^2 \)), \(A_{c2} \) ise eleman temiz yüksekliği/kesit derinliği>6 olan kolonların toplam enkesit alanı (\(\text{cm}^2 \))
göstermektedir. Kısa kolonların taşma gücü ise (2.10) bağıntısı ile hesaplanabilir. Bu bağıntıda A_{sc} kısa kolonların toplam enkesit alanını (cm^2) ifade eder.

\[
C_w = \left(\frac{f_{cd}}{200W}\right) * \left(30A_{w1} + 20A_{w2} + 10A_{w3}\right) \quad (2.8)
\]

\[
C_c = \left(\frac{f_{cd}}{200W}\right) * \left(10A_{c1} + 7A_{c2}\right) \quad (2.9)
\]

\[
C_{sc} = \left(\frac{f_{cd}}{200W}\right) * 15A_{sc} \quad (2.10)
\]

S_D katsayısı plandaki düzensizlikler, bodrum katın varlığı, plandaki boyutların oranı, kat yüksekliklerindeki düzensizlik, genleşme derzlerinin aralıkları, yumuşak katın varlığı, plandaki büyük boşluklar ve düşmerkezlik gibi özellikler dikkate alınarak kaynak [2] tarafından verilmiştir. Örneğin yapı yaklaşık simetrik bir plana sahip ise hesaplarda $S_D=1.0$, L, T, U gibi simetrik olmayan bir plana sahipse $S_D=0.9$ olarak göz önüne alınabilir. Planda binanın uzun boyut/kısa boyut oranı < 5 ise $S_D=1.0$, bu oran 5 ile 8 arasında ise $S_D=0.8$ olarak göz önüne alınabilir [6].

Yöntem ile ilgili daha detaylı bilgi kaynak [2-5]'te yer alan çalışmalarda bulunabilir.

2.3. P25 Yöntemi

Avrupa Birliği (AB) fonları tarafından desteklenen LESSLOSS projesi kapsamında 2004 yılından beri yapılan araştırmalarda, İstanbul'da 500 yılda bir olmasi beklenen senaryo depremi göz önüne alındığında, mevcut betonarme binaların içinden en riskli % 4.1' in seçilip bulunması durumunda 29 bin vatandaşın hayatını kurtarılacağı, bir başka deyişle can kaybının % 92 oranında azaltılacağı hesaplanmıştır [7]. Göçme riskinin bilimsel olarak bulunabilmesi için, öncelikle zemin ve malzeme parametrelerinin tayini ve bu veriler kullanılarak söz konusu yapının bilgisayar ortamında modellenerik itme analizinin veya daha
doğrusu dolgu duvarlarının katkısını da dikkate alabilen zaman tanıım alanında doğrusal olmayan analizlerinin yapılmasını gerektir.

Ancak, milyonlarca bina içeren bir yapı stoğu için böyle ayrıntılı deneysel ve analitik bir çalışma yapmak hem zaman ve hem de finansman açısından adeta imkansızdır. Örneğin, sadece İstanbul'daki güvensiz binaların incelenerek güçlendirme işleminin yapılabilmesi için en az 25 Milyar dolara ve 25 yıla ihtiyaç vardır [8]. Türkiye'de ve özellikle İstanbul ve çevresinde mevcut bina stoğunun büyüklüğü ve karmaşıklığı dikkate alırsa, hangi yapların daha fazla risk taşıdığını hızlıça saptanmasıyle bina bazında tarama yapmayı gerektiren oldukça kapsamlı bir iştır. Daha sonraki aşama ise, öncelikli olarak göçme riski en yüksek bina grubu üzerinde acil önlem alınarak, gerekirse güçlendirme veya yıkma işlemlerinin ivedilikle tamamlanması ve olası bir deprem durumunda can güvenliğinin en aza indirgenmesi gerekir.

Hızlı değerlendirme yöntemleri ile ilgili ilk çalışmalar, 1968'de Tokachi-Oki depreminden sonra elde edilen veriler kullanılarak geliştirilen kolon-duvar indeksine dayalı SST adlı yöntemdir [9]. Hızlı değerlendirme yöntemlerinin deprem mühendisliği literatürüne ciddi bir biçimde girmesini sağlayan en önemli gelişmeler kaynak [10,11]'dedir.

1992 Erzincan Depremi'nden itibaren yurdumuzda da, göçme sınırını yakalamaya çalışan çeşitli hızlı değerlendirme yöntemi araştırılama başlanmıştır [12-20].

Sözkonusu yöntemde yapıda mevcut kolon, perde ve dolgu duvar boyutları, rijiitlikleri, taşıyıcı sistem düzeni, bina yüksekliği, yönetmelikte tanımlanan çeşitli yapısal düzenler, malzeme ve zemin özellikleri gibi parametreler üzerinden hesaplarak bulunan \(P_1 \) temel yapısal puanı ile birlikte, binanın değişik göcme modlarını da göz önüne alan toplam yedi adet göcme puanı hesaplanmaktadır. Son olarak, bu puanların birbirleri ile etkileşimini, ayrıca yapısal ve çevresel özellikleri, binanın bulunduğu bölge ve deprem verilerini de göz önüne alan bir \(P \)-sonuç puanı belirlenmektedir. Elde edilen \(P \)-sonuç puanının az, orta veya yüksek riskli bölgeye düşmesi durumuna göre yapının göcme riski hakkında ya kesin bir bilgi edinilmekte veya finansal verilere göre belirlenen bir kararsızlık bandı içine düşmesi halinde, kapsamlı inceleme yapılarak gerekirse yıkılm ası veya güçlendirilmesi önerilmektedir.

Hızlı değerlendirme yönteminde binanın \(P \)-sonuç puanını hesaplayabilmek için öncelikle sözkonusu binanın \(P_1, P_2, \ldots, P_7 \) olmak üzere 7 ayrı göcme riskini temsil eden 7 farklı değerlendirme puanı hesaplanır. Bu risklerin birbirleri ile etkileşime girip girmediklerini saptamak için her \(P_i \) puanı için belirlenen ağırlık çarpanı da dikkate alınarak \(P_w \)-ağırlıklı ortalama puan hesaplanır. Daha sonra, \(P_i \) puanlarının en küçüğü olan \(P_{\text{min}} \) puanı için \(P_w \)-ağırlıklı ortalama puanına bağlı olarak \(P_i \) göcme kriterlerinin birbirleri ile etkileşimini temsil eden bir \(\beta \)-çarpanı bulunur [33].

\[\text{Şekil 2.1. Kritik kat alanı [33]} \]
Ayrıca, binanın önem derecesini, bölgenin depremsellik derecesini, binanın hareketli yük katsayısını ve binanın oturduğu arazinin topografyasını temsil eden bir α-çarpanı ile düzentleme yapılır. Elde edilen P-sonuç performans puanının değerine göre söz konusu binanın yıkılma potansiyeli olup olmadığı konusunda bilgi edinilir [33].

2.3.1. Kritik Kat Seçimi

Sözkonusu binanın zemin kat taban alanı, kenarları a ve b olan bir dikdörtgen içine oturtularak binanın A_e efektif kat alanı bulunur ($A_e = ab$) (Şekil 2.1). Daha sonra, en fazla hasar potansiyeli olan bir kritik kat seçilir. Kritik kat genellikle binanın zemin katıdır. Binada bodrum katın hiç istinat perdesi bulundurulmamış durumunda, kritik kat bir bodrum kat olabilir. Hangi katın kritik kat olduğundan şüpheye düşüldüğü durumlarda, hesapların şüphe duyulan her kat için yapılması ve en olumsuz puanın binanın performans puanı olarak kabul edilmesi doğru bir yaklaşım olacaktır [33].

2.3.2. C_A En Kesit Alanı Endeksi Bileşkesi

Önce kritik katta bulunan kolon, perde, dolgu duvarların enk esit alanları, atalet momentleri ve daha sonra alan ve atalet momenti endeksleri hesaplanır. Alan endeksi, kolon, perde ve dolgu duvar alanlarının efektif kat alanına oranı olarak tarif edilir. Bu oran, elemanların her iki yöndeki kesme alanlarına dayandığı için, binanın oturtulduğu kartezyen sisteminde kabul edilen x ve y yönleri için farklı sonuçlar verecektir. Alan endeksleri C_{Ax} ve C_{Ay} aşağıdaki şekilde hesaplanır Denklem (2.11, 2.12):

$$C_{Ax} = 2(10^5)\frac{A_{ef,x}}{A_e}$$

(2.11)

$$C_{Ay} = 2(10^5)\frac{A_{ef,y}}{A_e}$$

(2.12)

$$A_{ef,x} = A_c + A_{sx} + (E_m/E_c) A_{wx}$$

$$A_{ef,y} = A_c + A_{sy} + (E_m/E_c) A_{wy}$$

(2.13)
Burada;

\(A_c \) : Kritik kattaki kolon enkesit alanları toplamı,

\(A_{sx} \) : Kritik kattaki betonarme perde duvarların enkesit alanları toplamı,

\(A_{wx} \) : Kritik kattaki dolgu duvarlarının enkesit alanları toplamı,

\(E_m / E_c \) : Dolgu duvarı elastisite modülünün beton elastisite modülüne oranı =0.15 dir.

Bu alan endekslerinin küçüğüne minimum, büyüğüne maksimum bileşen gözü ile bakılarak \(C_A \)-Alan Endeksi Bileşkesi için ağırlıklı bir ortalama endeks hesaplanır (Denklem 2.14,2.15) [33].

\[
C_{A,\text{min}} = \min (C_{Ax}, C_{Ay})
\]

\[
C_{A,\text{max}} = \max (C_{Ax}, C_{Ay})
\] (2.14)

\[
C_A = \sqrt{\left(0.87C_{A,\text{min}}\right)^2 + \left(0.50C_{A,\text{max}}\right)^2}
\] (2.15)

2.3.3. \(C_I \) Atalet Momenti Endeksi Bileşkesi

Her iki yöndeki atalet momenti endekleri ve bunların bileşkeleri olan \(C_I \)-Atalet Momenti Endeksi Bileşkesi aşağıdaki şekilde hesaplanır:

\[
C_{Ix} = 2 \left(10^5\right) \left(\frac{I_{ef,x}}{I_x}\right)^{0.2}
\] (2.16)

\[
C_{Iy} = 2 \left(10^5\right) \left(\frac{I_{ef,y}}{I_y}\right)^{0.2}
\] (2.17)

\[
I_x = a^3 b/12 ; I_y = b^3 a/12
\] (2.18)

\[
I_{ef,x} = I_{cx} + I_{sx} + \left(\frac{E_m}{E_c}\right) I_{wx}
\]

\[
I_{ef,y} = I_{cy} + I_{sy} + \left(\frac{E_m}{E_c}\right) I_{wy}
\] (2.19)

\[
C_{I,\text{min}} = \min (C_{Ix}, C_{Iy})
\]

\[
C_{I,\text{max}} = \max (C_{Ix}, C_{Iy})
\] (2.20)
\[
C_I = \sqrt{(0.87C_{l_{\text{min}}})^2 + (0.50C_{l_{\text{max}}})^2}
\] (2.21)

Burada;

\(I_x \) ve \(I_y \): Bina taban alanını içine alan dikdörtgenin x ve y yönündeki atalet momentleri,
\(I_{cx} \) ve \(I_{cy} \): Kritik kat kolonlarının x ve y yönüne göre atalet momentleri toplami,
\(I_{sx} \) ve \(I_{sy} \): Kritik kat perdelerinin x ve y yönüne göre atalet momentleri toplami,
\(I_{sx} \) ve \(I_{sy} \): Kritik kat dolgu duvarlarının x ve y yönüne göre atalet momentleri toplamı,

\(C_I \): Atalet momenti endeksinin bileşkesini göstermektedir.
\(C_A \) ve \(C_I \) alan ve atalet momenti endekslerinin bileşkeleri, depremin binanın zayıf yönüne 30° açı ile geldiği yaklaşımlına dayanılarak hesaplanmaktadır [33].

2.3.4. Po - Taşıyıcı Sistem Puanı

Binanın taşıyıcı sistem özellikleri yansıtan \(P_0 \) puanı aşağıdaki formülden hesaplanır Denklem (2.22):

\[
P_0 = \frac{(C_A + C_I)}{h_o}
\] (2.22)

Burada \(h_o \) bina yüksekliği ile ilgili bir düzeltme çarpandır, \(h_o \)-carpanı, \(H=\)bina toplam yüksekliğine bağlı olarak Denklem (2.23) 'de verilmiştir:

\[
h_o = -0.6 \, H^2 + 39.6 \, H -13.4
\] (2.23)

Bu formül 3m yükseklikte tek katlı bir binada \(h_o =100 \) değerini, 15m yükseklikte 5 katlı bir binada \(h_o=446 \) ve 30m yükseklikte 10 katlı bir binada \(h_o =635 \) değerini vermektedir. Bu çalışma için yazılan bir program ile, farklı yüksekliklerde ve farklı tasarım girdilerine sahip 27 bin civarında bina üretilerek sonuçlar regresyon analizine tabi tutulmuş ve Denklem (2.23) elde edilmiştir [33].
Tablo 2.1. Yapısal Düzensizlik Katsayları (f₁) [33]

<table>
<thead>
<tr>
<th>Katsayı</th>
<th>Tanım</th>
<th>Risk Seviyesi</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yüksek</td>
<td>Az</td>
<td>Yok</td>
</tr>
<tr>
<td>f₁</td>
<td>Burulma Düzensizliği</td>
<td>0.90</td>
<td>0.95</td>
<td>1.00</td>
</tr>
<tr>
<td>f₂</td>
<td>Döşeme Süreksizliği</td>
<td>0.90</td>
<td>0.95</td>
<td>1.00</td>
</tr>
<tr>
<td>f₃</td>
<td>Düşey Doğrultuda Süreksizlik</td>
<td>0.65-0.75</td>
<td>0.90</td>
<td>1.00</td>
</tr>
<tr>
<td>f₄</td>
<td>Kütte Düzensizliği</td>
<td>0.90</td>
<td>0.95</td>
<td>1.00</td>
</tr>
<tr>
<td>f₅</td>
<td>Korozyon Varlığı</td>
<td>0.90</td>
<td>0.95</td>
<td>1.00</td>
</tr>
<tr>
<td>f₆</td>
<td>Ağır Cephe Elemanları</td>
<td>0.90</td>
<td>0.95</td>
<td>1.00</td>
</tr>
<tr>
<td>f₇</td>
<td>Asma Kat Mevcudiyeti</td>
<td>0.90</td>
<td>0.95</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(γ=Asma kat /Kat alanı)</td>
<td>γ>0.25</td>
<td>0<γ<0.25</td>
<td>γ=0</td>
</tr>
<tr>
<td>f₈</td>
<td>Katlarda Seviye Farkı veya Kısımsı Bodrum</td>
<td>0.80</td>
<td>0.90</td>
<td>1.00</td>
</tr>
<tr>
<td>f₉</td>
<td>Beton Kalitesi⁽¹⁾</td>
<td>f₉ = (f₀/20)¹⁵⁵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f₁₀</td>
<td>Zayıf Kolon-Kuvvetli Kiriş⁽²⁾</td>
<td>f₁₀=[(Iₓ + Iᵧ)/2I₀]₀.₁₅ ≤1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f₁₁</td>
<td>Etriye Sıklığı⁽³⁾</td>
<td>f₁₁=0.6 ≤(10/s)₀.₂₅ ≤1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f₁₂</td>
<td>Zemin Smifi</td>
<td>0.90 (Z4 için)</td>
<td>0.95 (Z3 için)</td>
<td>1.00 (Z2,Z1 için)</td>
</tr>
<tr>
<td>f₁₃</td>
<td>Temel Tipi</td>
<td>0.80-0.90 (Tekil temel)</td>
<td>0.95 (Sürekli temel)</td>
<td>1.00</td>
</tr>
<tr>
<td>f₁₄</td>
<td>Temel Derinliği</td>
<td>0.90 (1m'den az)</td>
<td>0.95 (1 - 4m arası)</td>
<td>1.00 (4m'den fazla)</td>
</tr>
</tbody>
</table>
(1) f_c, binanın MPa cinsinden beton kalitesidir.

(2) I_x, I_y değerleri, kritik kat kolonlarının ortalama boyutlarından elde edilen temsili kolonun atalet momenti, I_b değeri ise, kritik katta en çok tekrar eden kirişin atalet momentidir.

(3) s, cm cinsinden sarılma bölgesindeki etriye ariğıdır.

2.3.5. **P_1 - Temel Yapısal Puanı**

Yapışal düzensizlik katsayıları olan f_i katsayılarının tanımlan ve aldıkları değerler Tablo 2.1'de verilmiştir. Bu değerlerin P_0 puanı ile arka arkaya çarpılması sureti ile P_1 puanı aşağıdaki şekilde elde edilir Denklem (2.24) [33]:

$$P_1 = P_0 \left(\prod_{i=1}^{14} f_i \right) \quad (2.24)$$

2.3.6. **P_2 - Kısa Kolon Puanı**

Tablo 2.2 P₂ - Kısa Kolon Puanlama Matrisi [33].

<table>
<thead>
<tr>
<th>Kısa Kolonların Bulunma Oram</th>
<th>Kısa Kolon boyu /Kat Yüksekliği</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.75-1.00)h</td>
</tr>
<tr>
<td></td>
<td>(0.40-0.75)h</td>
</tr>
<tr>
<td></td>
<td>(0.15-0.40)h</td>
</tr>
<tr>
<td></td>
<td>(0.00-0.15)h</td>
</tr>
<tr>
<td>Az (%5 den az)</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Bazı (%5-%15)</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>37</td>
</tr>
<tr>
<td>Fazla (%15-%30)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Çok Fazla (%30 dan fazla)</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

2.3.7. P₃ – Yumuşak Kat ve Zayıf Kat Puanı

Giriş katında kat yüksekliğinin çeşitli amaçlarla normalden yüksek tutulması ve/veya bina yatay dayanımına katkısı oldukça fazla fazla olan yıguna dolgu duvarlarının giriş katında bulunmaması gibi nedenlerle giriş katları zayıf hale getirilmekte ve hasarın odak noktası olmaktadır (Şekil 2.2a). Bu zayıflığı ifade eden P₃ Yumuşak kat ve Zayıf kat Puanı:

\[P₃=100[rₐrᵣ(hᵣᵣ/hᵣ)³]^{0.60} \] \hspace{1cm} (2.25)

denklemi ile ifade edilmektedir (Denklem 2.25). Burada hᵣ ve hᵣᵣ kritik kat ve bir üst katın yüksekliklerini göstermekte olup, kritik katın göreceli yatay yer değiştirmesini temsilen eklenmiştir. Parantezin 0.60 ıncı kuvvetim almak suretiyle P₃ puanı 0 ila 100 arasında değerlendirilir.

Denklem (2.26) ve (2.27) ifadeleriyle verilen rₐ ve rᵣ kritik kat ve bir üstündeki katın, perde ve dolgu duvarlarının efektif alan ve efektif atat momenti cinsinden birbirlerine oranlarını göstermektedir: rₐ ve rᵣ değerleri x ve y yönleri için ayrılı ayrı bulunur ve ortalamaları alınır. Burada Aₑ f ve Iₑ f değerleri Denklem (2.13) ve (2.19) yardımcı ile bulunabilir [33].
\[r_a = \left(\frac{A_{ef,i}}{A_{ef,i+1}} \right) \leq 1 \] \hspace{1cm} (2.26)

\[r_t = \left(\frac{I_{ef,i}}{I_{ef,i+1}} \right) \leq 1 \] \hspace{1cm} (2.27)

2.3.8. \(P_4 \) – Çıkma ve Çerçeve Sürekli Puanı

Türkiye’de çok yaygın olarak kullanılan, giriş katın üstündeki ağır çıkmalar hem binada kütle düzensizliğine ve deprem moment kolunun yukarılara taşınmasına neden olmakta, hem de dış cephe kolonları arasındaki kiriş akşalarının ötelemesi yolunun çerçeve sürekliği oluşturmaktadır (Şekil 2.3). Kaynak [25]’te yapılan çalışmada bu tip düzensizliğin binalarda % 4 ila % 54 arasında dayanım kaybına sebebiyet verdiği saptanmıştır. Binadaki çıkmalar ve bu nedenle oluşturulan çerçeve sürekliliği puanı, \(P_4 \), Tablo 2,3’den alınmaktadır [33].

2.3.9. \(P_5 \) – Çarışma Puanı

Şekil 2.2 Geçmiş Depremlerden Hasar Örnekleri a) Yumuşak-zayıf Kat, b) Kısa Kolon Hasarı, c) Çarpışma Hasarı ve d) Büyük Zemin Oturması Hasarı [33]

Tablo 2.3 P₄ - Çıkmalar ve Çerçeve Süreksizliği Puanı [33].

<table>
<thead>
<tr>
<th>Çerçeve Kırişleri</th>
<th>Çıkmanın Bulunma Oranı</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tek Cephe</td>
</tr>
<tr>
<td>Var</td>
<td>90</td>
</tr>
<tr>
<td>Yok</td>
<td>70</td>
</tr>
</tbody>
</table>

2.3.10. P₆ – Sıvılaşma Potansiyeli

Sıvılaşma potansiyeli puanlan yeraltı su seviyesine (YASS) göre Tablo 2.5’te verilmiştir. Herhangi bir bölgede hızlı veya daha ayrıntılı değerlendirmeye gidilmeden önce zemin özelliklerinin saptanması zorunludur. Sıvılaşma
potansiyeli çeşitli zemin parametrelerine bağlı olarak az, orta ve yüksek olarak tayin edilmelidir. Sıvılaşma potansiyelinin nasıl tayin edileceği [29,30]'da ayrıntılı olarak tarih edilmiştir. Sıvılaşma potansiyeli olmayan zeminlerde $P_6=100$ alınır [33].

2.3.11. P_7 – Toprak Hareketleri Puanı

Çeşitli toprak hareketleri için puanlama matrisi Tablo 2.6 da verilmiştir. Bu tabloya girebilmek için, her şeyden önce zemin parametrelerinin tayin edilmesi ve bu parametrelerin işığında;

a) Büyük oturmalar (Şekil 2.2d)
b) Yanal dağılma
c) Heyelan
d) İstinat duvarı göçmesi
gibi 4 ayrı cins zemin hareketinden herhangi birinin olup olamayacağı saptanmalıdır. Herhangi bir toprak hareketi ihtimali saptanmışsa yeraltı su seviyesine (YASS) göre, Tablo 2.6’dan uygun P_7 puanı seçilir [33].

Şekil 2.3 Ağır Çıkmalar ve Oluşturulan Çerceve Süreksizlikleri [33]
Tablo 2.4. P₅ – Çarpışma Puanı Matrisi [33].

<table>
<thead>
<tr>
<th>Çarpışma Türü</th>
<th>Merkezi Çarpışma</th>
<th>Diş Merkezi Çarpışma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aynı Seviyede Düşeme</td>
<td>Farklı Seviyede Düşeme</td>
</tr>
<tr>
<td>Birbirine bitişik binalarda üç bina</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>Bir bina diğerinden daha rijit ve/veya ağır</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>Alçak bina ile yüksek bina komşu</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>Binalar aynı yükseklikte</td>
<td>70</td>
<td>60</td>
</tr>
</tbody>
</table>

Tablo 2.5. P₆ – Sıvılaşma Potansiyeli Puanları [33].

<table>
<thead>
<tr>
<th>YASS</th>
<th>Hesaplamalı Sıvılaşma Potansiyeli</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Az</td>
</tr>
<tr>
<td>>10m</td>
<td>60</td>
</tr>
<tr>
<td>2.0m – 10.0m</td>
<td>45</td>
</tr>
<tr>
<td><2.0m</td>
<td>30</td>
</tr>
</tbody>
</table>

Tablo 2.6. P₇ – Toprak Hareketleri Puanı [33].

<table>
<thead>
<tr>
<th>Zemin Sınıfı</th>
<th>YASS (m)</th>
<th>P₇ Puanı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z₁, Z₂</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Z₃</td>
<td>YASS ≤5.0</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>YASS >5.0</td>
<td>35</td>
</tr>
<tr>
<td>Z₄</td>
<td>YASS ≤5.0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>YASS >5.0</td>
<td>20</td>
</tr>
</tbody>
</table>
2.3.12. \(\alpha \) – Düzeltme Çarpanı

Çeşitli göcme kriterlerini temsil eden \(P_i \) puanları arasında seçilecek \(P_{\min} \) minimum puanın binanın ve yörenin özelliklerine göre ayrıca bir \(\alpha \) çarpanı ile düzeltilmesi gerekmektedir, \(\alpha \) çarpanı; bina önem katsayısı \(I \), deprem bölgesine göre tayin edilen efektif ivme katsayısı \(A_0 \), hareketli yük çarpanı \(n \) ve topografik konum katsayısı \(t \) gözönüne alınarak Denklem (2.28) yardımcı ile hesaplanır;

\[
\alpha = \left(\frac{1}{I} \right) \left(1.4 - A_0 \right) \left[\frac{I}{(0.4n+0.88)} \right] t
\]

(2.28)

Topoğrafik \(t \) katsayısının nominal değeri \(t = 1.0 \)'dir. Bu katsayı, incelenen binanın bir tepenin üstüne kurulu olması durumunda \(t = 0.7 \) ve dik bir yamaçta kurulu olması durumunda ise \(t = 0.85 \) değerini almaktaadır. Bu katsayının belirlenmesinde, özellikle 1985 Şili depremi sonrası Canal Beagle bölgesinde yapılan artırılmış ölçümler büyük rol oynamıştır. Birbirinin tamamen aynı inşa edilen bloklardan bir tepe üstünde sıralananların aşığında düzlükte bulunanlara oranla daha fazla hasar aldığı tespit edilmiştir [31,32]. Ancak, Şili depremi sonrası bir bölgesinde elde edilen sonuçların her türlü topoğrafik etki için kullanılamayacağını açıklar. Ayrıca, topografik büyütmenin frekansa bağlı olması, yapılan ölçümü arıcı kayıtlar olması gibi daha birçok belirsizlik topografik etki parametresini oldukça karmaştırmaktadır.

Fakat yukarıda bahsedilen yayınlardaki topografik etkinin en azından niteliksel tarifi P25 yöntemine deışık tutmuştur [33].

2.3.13. \(\beta \) – Düzeltme Çarpanı

Binanın sonuç performans puanı daha önce hesaplanan 7 adet \(P_i \) puanı ağırlıklı olarak birbirleri ile etkileşimleri yolu ile belirlenmektedir. Bunun için önce \(P_i \) puanları içinden \(P_{\min} \) minimum puanı saptanır ve ağırlık katsayısı olarak \(w = 4 \) ile çarpılır. Diğer \(P_i \) puanları Tablo 2.7'de verilen ağırlık puanları ile çarpılarak Denklem (2.29) yardımcı ile ağırlıklı ortalama puanı \(P_w \) saptanır. Ağırlıklı ortalama puanı \(P_w \) kullanarak Şekil 2.4 yardımcı ile bir \(\beta \) – Düzeltme çarpanı elde edilir.

\[
P_w = \frac{\Sigma (w_i P_i)}{\Sigma w_i}
\]

(2.29)
2.3.14. P – Sonuç Puanı

Yukarıda hesaplanan α ve β çarpanları yardımı ile binanın performansını belirleyen P sonuç puanı:

\[P = \alpha \beta P_{\text{min}} \]

şeklinde hesaplanır. Burada \(P_{\text{min}} \) birbirinden bağımsız olarak hesaplanan ve yukarıda ayrıntılar ile açıklanan 7 adet \(P \) değerlerinde puanı arasından en küçüğüdür [33].

2.4. Kapasite - Talep Oranı Yöntemi

Mevcut betonarme binaların pratik ve çabuk bir şekilde deprem güvencesinin belirlenmesi yönünde bir yöntem geliştirilmiştir. Bu yöntemin esası, binada bulunan kolonların göreli kat ötelenmeleri gözönüne alarak, kolonlardaki talep ve kapasite karşılaştırılması analizine dayanmaktadır. Bu analizler daha önceden bilgisayar ortamında yapılmış, bina güvenliğini belirleyecek mühendise birtakım formlar, formüller, tablolar ve grafikler üretilmiştir.

İnceleme iki aşamada yapılır. Öncelikle, bir depremden gelebilecek azami göreli kat
ötelenmeleri binanın birinci kat planındaki iki ortogonal (X ve Y) doğrultusunda bulunan kolonların atalet momentleri hesaplanır ve ardından bina türü ve kat adedine göre incelenerek binanın periyodu bir formül yardımıyla ile bulunur. Hesaplanan periyoda ve yine bina türü ve kat adedine göre depremdede meydana gelebilecek azami görelık kat ötelenmesi bir başka grafik aracılığıyla bulunur. Bu değer deprem talebini göstermektedir.

İkinci aşamada ise, planda bulunan kolonların azami ötelenme kapasiteleri bir grafikten seçilir. Burada kolona gelen yük seviyesi, kolondaki boyuna doğru tutdaki donatı oranı, beton pas payının kalınlığı, dörtgen kolonların kenar uzunluklarının birbirlerine olan oranı ve iki kat arası yükseklik parametreleri bu grafiklerin üretiminde ana parametreleri oluşturmuştur.

Bina türleri 3 ila 9 kat arasında olup, oluşturulan matematiksel modeller yumuşak kat ve üst katlara doğru kolonların küçültülmesi gibi özelliklere sahiptir. Aşağıda Şekil 2.5'de dinamik analizlerinde kullanılan bina türleri gösterilmektedir [35].
A1 – 3-9 kat arası, kat yükseklikleri 3m, kolonlar arası mesafe 5m, kolon ebatları yukarıya doğru sabit, dolgu duvarı olmaksızı (çapraz çerçeve)

B1 – 3-9 kat arası, kat yükseklikleri 3m, kolonlar arası mesafe 5m, yumuşak kat yüksekliği 4.5 m, kolon ebatları yukarıya doğru sabit, dolgu duvarı olmaksızı (çapraz çerçeve)

C1 – 3-9 kat arası, kat yükseklikleri 3m, kolonlar arası mesafe 5m, yumuşak kat yüksekliği 4.5 m, kolon ebatları yukarıya doğru küçülüyor, düzeyde düzensiz (en alt kat dışında diğer katlarda dolgu duvarı olmaksızı) çerçeve. Burada B2 tip bina modeline ek olarak, üst katlar tek bir kütleye gibi davranıyor.

Binalar iki boyutlu deprem analizlerine tabi tutulmuş ve sonuçlardan periyod formülleri Sekil 2.5’deki bina modelleri için bazı varsayımlar ile üretilmiş ve buna bağlı olarak da azami görevli kat ötelenmeleri (talep) bulunmuştur. Bu analizlerde kullanılan varsayımlar kısaca, [34]’e göre zemin sınıfinin Z2 ve Z3 olması, burkulma...
düzensizliğin olması, zemin-yapı etkileşimi olması (temellerin zemine rijit bağlanması), binanın çerçeve türü olması (perde duvar olması, ya da yatay yöndeki rijitliğe fazla katkı yapmayacak kadar sınırlı sayıda bulunması), bodruma çevresinde perdenin olması, kolon sargı donatısının zayıf olması, binaların birinci derece deprem bölgesinde bulunması, sistem yer değiştirme sünekliğinin her bir kolonun yer değiştirme sünekliğine eşit olması, bina önem katsayısı I = 1 olan binaları (konut veya işçi amacyyla kullanılan binalar) esas alınarak sıralanabilir [35].

Şekil 2.5'deki modeller için geliştirilen periyod formülleri, saniye birim cinsinden, her ortogonal yön için aşağıda verilmiştir (Denklem (2.31) ve (2.32)).

\[T_x = (C_1 + C_2 s) \frac{n}{I_y} \]
\[T_y = (C_1 + C_2 s) \frac{n}{I_x} \]

Burada, \(C_1 \) ve \(C_2 \) sabit katsaylar olup bina türüne bağlı olarak ifade edilmiştir. Tablo 2.8'de bu katsayılara yeralmaktadır. n bir katta bulunan kolon adedini, s kat adedini, \(I_x \) ve \(I_y \) ise kat planındaki \(m^4 \) birim cinsinden toplam atalet momentini göstermektedir.

Tablo 2.8 Periyod formüllerinde kullanılacak \(C_1 \) ve \(C_2 \) sabit katsaylar [35].

<table>
<thead>
<tr>
<th>Bina türü</th>
<th>(C_1)</th>
<th>(C_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>9 \times 10^{-3}</td>
<td>6 \times 10^{-3}</td>
</tr>
<tr>
<td>B1</td>
<td>10 \times 10^{-3}</td>
<td>6 \times 10^{-3}</td>
</tr>
<tr>
<td>B2</td>
<td>14 \times 10^{-3}</td>
<td>4 \times 10^{-3}</td>
</tr>
<tr>
<td>C1</td>
<td>1 \times 10^{-3}</td>
<td>6 \times 10^{-3}</td>
</tr>
</tbody>
</table>

Tablo 2.9'da bina türleri ve kat adetlerine göre hesaplanmış sayısal periyod ve görelili kat ötelenmeleri talepleri yer almaktadır. Ara değerler için doğrusal enterpolasyon yapılabilir. Burada her bir modelin doğal periyodunu (T) ve her bir katın görelili kat ötelenmesinin kat yüksekliğine oranı (dr) göstermektedir. Örneğin 47b2
Tablo 2.9 Periyod ve göreli kat ötelenme talebi değerleri [35].

<table>
<thead>
<tr>
<th>Frame model</th>
<th>36a1</th>
<th>31a1</th>
<th>32a1</th>
<th>33a1</th>
<th>34a1</th>
<th>35a1</th>
<th>Frame model</th>
<th>67a1</th>
<th>61a1</th>
<th>62a1</th>
<th>64a1</th>
<th>63a1</th>
<th>65a1</th>
<th>66a1</th>
<th>68a1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (sec.)</td>
<td>0.768</td>
<td>0.685</td>
<td>0.518</td>
<td>0.429</td>
<td>0.336</td>
<td>0.311</td>
<td>T (sec.)</td>
<td>1.071</td>
<td>0.975</td>
<td>0.737</td>
<td>0.637</td>
<td>0.588</td>
<td>0.518</td>
<td>0.482</td>
<td>0.403</td>
</tr>
<tr>
<td>Story</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>Story</td>
<td>dr (%)</td>
<td>dr (%)</td>
<td>dr (%)</td>
<td>dr (%)</td>
<td>dr (%)</td>
<td>dr (%)</td>
<td>dr (%)</td>
<td>dr (%)</td>
</tr>
<tr>
<td>1</td>
<td>0.49</td>
<td>0.43</td>
<td>0.31</td>
<td>0.22</td>
<td>0.13</td>
<td>0.11</td>
<td>1</td>
<td>0.41</td>
<td>0.37</td>
<td>0.26</td>
<td>0.22</td>
<td>0.20</td>
<td>0.17</td>
<td>0.15</td>
<td>0.10</td>
</tr>
<tr>
<td>2</td>
<td>0.39</td>
<td>0.34</td>
<td>0.24</td>
<td>0.17</td>
<td>0.11</td>
<td>0.09</td>
<td>2</td>
<td>0.39</td>
<td>0.34</td>
<td>0.25</td>
<td>0.21</td>
<td>0.19</td>
<td>0.16</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>3</td>
<td>0.21</td>
<td>0.18</td>
<td>0.13</td>
<td>0.09</td>
<td>0.06</td>
<td>0.05</td>
<td>3</td>
<td>0.34</td>
<td>0.30</td>
<td>0.22</td>
<td>0.18</td>
<td>0.17</td>
<td>0.14</td>
<td>0.13</td>
<td>0.09</td>
</tr>
<tr>
<td>Frame model</td>
<td>47a1</td>
<td>41a1</td>
<td>42a1</td>
<td>43a1</td>
<td>44a1</td>
<td>45a1</td>
<td>46a1</td>
<td>48a1</td>
<td>Frame model</td>
<td>76a1</td>
<td>75a1</td>
<td>71a1</td>
<td>72a1</td>
<td>73a1</td>
<td>74a1</td>
</tr>
<tr>
<td>T (sec.)</td>
<td>0.884</td>
<td>0.735</td>
<td>0.591</td>
<td>0.466</td>
<td>0.435</td>
<td>0.402</td>
<td>0.329</td>
<td>0.274</td>
<td>T (sec.)</td>
<td>1.155</td>
<td>0.941</td>
<td>0.795</td>
<td>0.641</td>
<td>0.501</td>
<td>0.425</td>
</tr>
<tr>
<td>Story</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>Story</td>
<td>dr (%)</td>
<td>dr (%)</td>
<td>dr (%)</td>
<td>dr (%)</td>
<td>dr (%)</td>
<td>dr (%)</td>
</tr>
<tr>
<td>1</td>
<td>0.47</td>
<td>0.37</td>
<td>0.29</td>
<td>0.20</td>
<td>0.18</td>
<td>0.15</td>
<td>0.10</td>
<td>0.07</td>
<td>1</td>
<td>0.40</td>
<td>0.30</td>
<td>0.24</td>
<td>0.19</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>2</td>
<td>0.40</td>
<td>0.32</td>
<td>0.25</td>
<td>0.18</td>
<td>0.15</td>
<td>0.13</td>
<td>0.09</td>
<td>0.06</td>
<td>2</td>
<td>0.38</td>
<td>0.29</td>
<td>0.24</td>
<td>0.18</td>
<td>0.13</td>
<td>0.10</td>
</tr>
<tr>
<td>3</td>
<td>0.30</td>
<td>0.24</td>
<td>0.18</td>
<td>0.13</td>
<td>0.11</td>
<td>0.10</td>
<td>0.07</td>
<td>0.05</td>
<td>3</td>
<td>0.34</td>
<td>0.27</td>
<td>0.22</td>
<td>0.17</td>
<td>0.13</td>
<td>0.09</td>
</tr>
<tr>
<td>4</td>
<td>0.15</td>
<td>0.12</td>
<td>0.10</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
<td>4</td>
<td>0.29</td>
<td>0.23</td>
<td>0.19</td>
<td>0.15</td>
<td>0.11</td>
<td>0.08</td>
</tr>
<tr>
<td>Frame model</td>
<td>55a1</td>
<td>51a1</td>
<td>52a1</td>
<td>53a1</td>
<td>54a1</td>
<td>56a1</td>
<td>57a1</td>
<td>57a1</td>
<td>Frame model</td>
<td>76a1</td>
<td>75a1</td>
<td>71a1</td>
<td>72a1</td>
<td>73a1</td>
<td>74a1</td>
</tr>
<tr>
<td>T (sec.)</td>
<td>1.084</td>
<td>0.840</td>
<td>0.682</td>
<td>0.535</td>
<td>0.462</td>
<td>0.404</td>
<td>0.287</td>
<td>0.287</td>
<td>T (sec.)</td>
<td>1.155</td>
<td>0.941</td>
<td>0.795</td>
<td>0.641</td>
<td>0.501</td>
<td>0.425</td>
</tr>
<tr>
<td>Story</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>Story</td>
<td>dr (%)</td>
<td>dr (%)</td>
<td>dr (%)</td>
<td>dr (%)</td>
<td>dr (%)</td>
<td>dr (%)</td>
</tr>
<tr>
<td>1</td>
<td>0.49</td>
<td>0.36</td>
<td>0.28</td>
<td>0.21</td>
<td>0.16</td>
<td>0.12</td>
<td>0.06</td>
<td>0.06</td>
<td>1</td>
<td>0.40</td>
<td>0.30</td>
<td>0.24</td>
<td>0.19</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>2</td>
<td>0.44</td>
<td>0.33</td>
<td>0.25</td>
<td>0.19</td>
<td>0.15</td>
<td>0.11</td>
<td>0.06</td>
<td>0.06</td>
<td>2</td>
<td>0.38</td>
<td>0.29</td>
<td>0.24</td>
<td>0.18</td>
<td>0.13</td>
<td>0.10</td>
</tr>
<tr>
<td>3</td>
<td>0.36</td>
<td>0.27</td>
<td>0.21</td>
<td>0.16</td>
<td>0.13</td>
<td>0.10</td>
<td>0.05</td>
<td>0.05</td>
<td>3</td>
<td>0.34</td>
<td>0.27</td>
<td>0.22</td>
<td>0.17</td>
<td>0.13</td>
<td>0.09</td>
</tr>
<tr>
<td>4</td>
<td>0.26</td>
<td>0.19</td>
<td>0.15</td>
<td>0.11</td>
<td>0.09</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
<td>4</td>
<td>0.29</td>
<td>0.23</td>
<td>0.19</td>
<td>0.15</td>
<td>0.11</td>
<td>0.08</td>
</tr>
<tr>
<td>5</td>
<td>0.14</td>
<td>0.10</td>
<td>0.08</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>5</td>
<td>0.17</td>
<td>0.13</td>
<td>0.11</td>
<td>0.09</td>
<td>0.07</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Tablo 2.9 Periyod ve göreli kat ötelenme talebi değerleri (devam ediyor) [35].

<table>
<thead>
<tr>
<th>frame model</th>
<th>story (dr(%))</th>
<th>85a1</th>
<th>81a1</th>
<th>82a1</th>
<th>83a1</th>
<th>84a1</th>
<th>86a7</th>
<th>87a1</th>
<th>88a1</th>
<th>frame model</th>
<th>93a1</th>
<th>94a1</th>
<th>95a1</th>
<th>91a1</th>
<th>92a1</th>
<th>96a1</th>
<th>97a1</th>
<th>98a1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (sec.)</td>
<td>1,288</td>
<td>0,975</td>
<td>0,845</td>
<td>0,733</td>
<td>0,641</td>
<td>0,574</td>
<td>0,538</td>
<td>0,515</td>
<td></td>
<td>T (sec.)</td>
<td>1,447</td>
<td>1,267</td>
<td>1,097</td>
<td>0,879</td>
<td>0,723</td>
<td>0,608</td>
<td>0,552</td>
<td>0,502</td>
</tr>
<tr>
<td>story</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td></td>
<td>story</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
</tr>
<tr>
<td>1</td>
<td>0,39</td>
<td>0,28</td>
<td>0,23</td>
<td>0,19</td>
<td>0,16</td>
<td>0,14</td>
<td>0,13</td>
<td>0,10</td>
<td></td>
<td>1</td>
<td>0,40</td>
<td>0,34</td>
<td>0,29</td>
<td>0,22</td>
<td>0,17</td>
<td>0,13</td>
<td>0,12</td>
<td>0,10</td>
</tr>
<tr>
<td>2</td>
<td>0,38</td>
<td>0,27</td>
<td>0,23</td>
<td>0,19</td>
<td>0,16</td>
<td>0,14</td>
<td>0,13</td>
<td>0,10</td>
<td></td>
<td>2</td>
<td>0,39</td>
<td>0,33</td>
<td>0,28</td>
<td>0,21</td>
<td>0,17</td>
<td>0,13</td>
<td>0,12</td>
<td>0,10</td>
</tr>
<tr>
<td>3</td>
<td>0,35</td>
<td>0,25</td>
<td>0,21</td>
<td>0,18</td>
<td>0,15</td>
<td>0,13</td>
<td>0,12</td>
<td>0,09</td>
<td></td>
<td>3</td>
<td>0,37</td>
<td>0,32</td>
<td>0,27</td>
<td>0,20</td>
<td>0,16</td>
<td>0,13</td>
<td>0,11</td>
<td>0,10</td>
</tr>
<tr>
<td>4</td>
<td>0,31</td>
<td>0,23</td>
<td>0,19</td>
<td>0,16</td>
<td>0,14</td>
<td>0,12</td>
<td>0,11</td>
<td>0,09</td>
<td></td>
<td>4</td>
<td>0,33</td>
<td>0,29</td>
<td>0,24</td>
<td>0,19</td>
<td>0,15</td>
<td>0,12</td>
<td>0,11</td>
<td>0,10</td>
</tr>
<tr>
<td>5</td>
<td>0,27</td>
<td>0,19</td>
<td>0,17</td>
<td>0,14</td>
<td>0,12</td>
<td>0,11</td>
<td>0,10</td>
<td>0,08</td>
<td></td>
<td>5</td>
<td>0,29</td>
<td>0,26</td>
<td>0,22</td>
<td>0,17</td>
<td>0,14</td>
<td>0,11</td>
<td>0,10</td>
<td>0,09</td>
</tr>
<tr>
<td>6</td>
<td>0,21</td>
<td>0,16</td>
<td>0,13</td>
<td>0,12</td>
<td>0,10</td>
<td>0,09</td>
<td>0,08</td>
<td>0,06</td>
<td></td>
<td>6</td>
<td>0,25</td>
<td>0,22</td>
<td>0,19</td>
<td>0,15</td>
<td>0,12</td>
<td>0,10</td>
<td>0,09</td>
<td>0,08</td>
</tr>
<tr>
<td>7</td>
<td>0,15</td>
<td>0,11</td>
<td>0,10</td>
<td>0,09</td>
<td>0,07</td>
<td>0,07</td>
<td>0,06</td>
<td>0,05</td>
<td></td>
<td>7</td>
<td>0,20</td>
<td>0,18</td>
<td>0,15</td>
<td>0,12</td>
<td>0,10</td>
<td>0,08</td>
<td>0,07</td>
<td>0,07</td>
</tr>
<tr>
<td>8</td>
<td>0,09</td>
<td>0,06</td>
<td>0,06</td>
<td>0,05</td>
<td>0,04</td>
<td>0,04</td>
<td>0,03</td>
<td></td>
<td>8</td>
<td>0,15</td>
<td>0,13</td>
<td>0,11</td>
<td>0,09</td>
<td>0,07</td>
<td>0,06</td>
<td>0,06</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0,09</td>
<td>0,08</td>
<td>0,07</td>
<td>0,05</td>
<td>0,05</td>
<td>0,04</td>
<td>0,04</td>
<td>0,04</td>
<td></td>
<td>9</td>
<td>0,09</td>
<td>0,08</td>
<td>0,07</td>
<td>0,05</td>
<td>0,04</td>
<td>0,04</td>
<td>0,04</td>
<td>0,04</td>
</tr>
</tbody>
</table>
Tablo 2.9 Periyod ve göreli kat ötelenme talebi değerleri (devam ediyor) [35].

<table>
<thead>
<tr>
<th>frame model</th>
<th>36b1</th>
<th>31b1</th>
<th>32b1</th>
<th>33b1</th>
<th>34b1</th>
<th>35b1</th>
<th>frame model</th>
<th>67b1</th>
<th>61b1</th>
<th>62b1</th>
<th>64b1</th>
<th>63b1</th>
<th>65b1</th>
<th>66b1</th>
<th>68b1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (sec.)</td>
<td>1,127</td>
<td>1,004</td>
<td>0,757</td>
<td>0,625</td>
<td>0,488</td>
<td>0,451</td>
<td>T (sec.)</td>
<td>1,370</td>
<td>1,247</td>
<td>0,937</td>
<td>0,806</td>
<td>0,744</td>
<td>0,651</td>
<td>0,605</td>
<td>0,530</td>
</tr>
<tr>
<td>story</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>story</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
</tr>
<tr>
<td>1</td>
<td>0,79</td>
<td>0,69</td>
<td>0,49</td>
<td>0,39</td>
<td>0,29</td>
<td>0,24</td>
<td>1</td>
<td>0,78</td>
<td>0,70</td>
<td>0,49</td>
<td>0,41</td>
<td>0,37</td>
<td>0,32</td>
<td>0,29</td>
<td>0,23</td>
</tr>
<tr>
<td>2</td>
<td>0,24</td>
<td>0,21</td>
<td>0,15</td>
<td>0,12</td>
<td>0,09</td>
<td>0,08</td>
<td>2</td>
<td>0,31</td>
<td>0,28</td>
<td>0,20</td>
<td>0,17</td>
<td>0,15</td>
<td>0,13</td>
<td>0,12</td>
<td>0,10</td>
</tr>
<tr>
<td>3</td>
<td>0,11</td>
<td>0,09</td>
<td>0,07</td>
<td>0,05</td>
<td>0,04</td>
<td>0,03</td>
<td>3</td>
<td>0,26</td>
<td>0,23</td>
<td>0,16</td>
<td>0,14</td>
<td>0,13</td>
<td>0,11</td>
<td>0,10</td>
<td>0,08</td>
</tr>
<tr>
<td>frame model</td>
<td>47b1</td>
<td>41b1</td>
<td>42b1</td>
<td>43b1</td>
<td>44b1</td>
<td>45b1</td>
<td>46b1</td>
<td>frame model</td>
<td>76b1</td>
<td>75b1</td>
<td>71b1</td>
<td>72b1</td>
<td>73b1</td>
<td>74b1</td>
<td>76b1</td>
</tr>
<tr>
<td>T (sec.)</td>
<td>1,228</td>
<td>1,018</td>
<td>0,815</td>
<td>0,640</td>
<td>0,598</td>
<td>0,552</td>
<td>0,449</td>
<td>T (sec.)</td>
<td>1,441</td>
<td>1,160</td>
<td>0,972</td>
<td>0,778</td>
<td>0,605</td>
<td>0,509</td>
<td>1,441</td>
</tr>
<tr>
<td>story</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>story</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
</tr>
<tr>
<td>1</td>
<td>0,81</td>
<td>0,64</td>
<td>0,49</td>
<td>0,37</td>
<td>0,34</td>
<td>0,31</td>
<td>0,22</td>
<td>1</td>
<td>0,77</td>
<td>0,59</td>
<td>0,48</td>
<td>0,36</td>
<td>0,27</td>
<td>0,22</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,29</td>
<td>0,23</td>
<td>0,18</td>
<td>0,13</td>
<td>0,12</td>
<td>0,11</td>
<td>0,08</td>
<td>2</td>
<td>0,31</td>
<td>0,24</td>
<td>0,20</td>
<td>0,15</td>
<td>0,11</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,19</td>
<td>0,15</td>
<td>0,12</td>
<td>0,09</td>
<td>0,08</td>
<td>0,07</td>
<td>0,05</td>
<td>3</td>
<td>0,27</td>
<td>0,21</td>
<td>0,17</td>
<td>0,13</td>
<td>0,10</td>
<td>0,08</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,08</td>
<td>0,06</td>
<td>0,05</td>
<td>0,04</td>
<td>0,03</td>
<td>0,03</td>
<td>0,02</td>
<td>4</td>
<td>0,22</td>
<td>0,17</td>
<td>0,14</td>
<td>0,11</td>
<td>0,08</td>
<td>0,07</td>
<td></td>
</tr>
<tr>
<td>frame model</td>
<td>55b1</td>
<td>51b1</td>
<td>52b1</td>
<td>53b1</td>
<td>54b1</td>
<td>56b1</td>
<td>57b1</td>
<td>frame model</td>
<td>76b1</td>
<td>75b1</td>
<td>71b1</td>
<td>72b1</td>
<td>73b1</td>
<td>74b1</td>
<td>76b1</td>
</tr>
<tr>
<td>T (sec.)</td>
<td>1,443</td>
<td>1,118</td>
<td>0,900</td>
<td>0,703</td>
<td>0,603</td>
<td>0,528</td>
<td>0,376</td>
<td>T (sec.)</td>
<td>1,441</td>
<td>1,160</td>
<td>0,972</td>
<td>0,778</td>
<td>0,605</td>
<td>0,509</td>
<td>1,441</td>
</tr>
<tr>
<td>story</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>story</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
<td>dr (Yo)</td>
</tr>
<tr>
<td>1</td>
<td>0,90</td>
<td>0,66</td>
<td>0,51</td>
<td>0,38</td>
<td>0,31</td>
<td>0,27</td>
<td>0,14</td>
<td>1</td>
<td>0,77</td>
<td>0,59</td>
<td>0,48</td>
<td>0,36</td>
<td>0,27</td>
<td>0,22</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,35</td>
<td>0,25</td>
<td>0,20</td>
<td>0,15</td>
<td>0,12</td>
<td>0,11</td>
<td>0,06</td>
<td>2</td>
<td>0,31</td>
<td>0,24</td>
<td>0,20</td>
<td>0,15</td>
<td>0,11</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,27</td>
<td>0,19</td>
<td>0,15</td>
<td>0,11</td>
<td>0,09</td>
<td>0,08</td>
<td>0,05</td>
<td>3</td>
<td>0,27</td>
<td>0,21</td>
<td>0,17</td>
<td>0,13</td>
<td>0,10</td>
<td>0,08</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,18</td>
<td>0,13</td>
<td>0,10</td>
<td>0,07</td>
<td>0,06</td>
<td>0,05</td>
<td>0,03</td>
<td>4</td>
<td>0,22</td>
<td>0,17</td>
<td>0,14</td>
<td>0,11</td>
<td>0,08</td>
<td>0,07</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,08</td>
<td>0,05</td>
<td>0,04</td>
<td>0,03</td>
<td>0,03</td>
<td>0,02</td>
<td>0,02</td>
<td>5</td>
<td>0,17</td>
<td>0,13</td>
<td>0,11</td>
<td>0,08</td>
<td>0,06</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Çerçeve tipi: B1 Birinci doğal periyodu, T, ve göreli katlar arasındaki ötelenme talebinin kat yüksekliğine oranı, dr = (di - di-1) / hi
Tablo 2.9 Periyod ve göreli kat ötelenme talebi değerleri (devam ediyor) [35].

Çerçeve tipi: B1 Birinci doğal periyodu, T, ve göreli katlar arası ötelenme talebinin kat yüksekliğine oranı, \(dr = (d_i - d_{i-1}) / h_i \)

<table>
<thead>
<tr>
<th>frame model</th>
<th>85b1</th>
<th>81b1</th>
<th>82b1</th>
<th>83b1</th>
<th>84b1</th>
<th>86b1</th>
<th>87b1</th>
<th>88b1</th>
<th>frame model</th>
<th>93b1</th>
<th>94b1</th>
<th>95b7</th>
<th>91b1</th>
<th>92b1</th>
<th>96b1</th>
<th>97b1</th>
<th>98b1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (sec.)</td>
<td>1.558</td>
<td>1.171</td>
<td>1.007</td>
<td>0.864</td>
<td>0.757</td>
<td>0.672</td>
<td>0.630</td>
<td>0.532</td>
<td>T (sec.)</td>
<td>1.711</td>
<td>1.486</td>
<td>1.287</td>
<td>1.022</td>
<td>0.832</td>
<td>0.692</td>
<td>0.622</td>
<td>0.558</td>
</tr>
<tr>
<td>story</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>story</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
</tr>
<tr>
<td>1</td>
<td>0.79</td>
<td>0.56</td>
<td>0.46</td>
<td>0.39</td>
<td>0.33</td>
<td>0.28</td>
<td>0.26</td>
<td>0.21</td>
<td>1</td>
<td>0.83</td>
<td>0.69</td>
<td>0.58</td>
<td>0.44</td>
<td>0.34</td>
<td>0.27</td>
<td>0.24</td>
<td>0.21</td>
</tr>
<tr>
<td>2</td>
<td>0.33</td>
<td>0.23</td>
<td>0.20</td>
<td>0.16</td>
<td>0.14</td>
<td>0.12</td>
<td>0.11</td>
<td>0.09</td>
<td>2</td>
<td>0.35</td>
<td>0.30</td>
<td>0.25</td>
<td>0.19</td>
<td>0.15</td>
<td>0.12</td>
<td>0.11</td>
<td>0.09</td>
</tr>
<tr>
<td>3</td>
<td>0.29</td>
<td>0.21</td>
<td>0.18</td>
<td>0.15</td>
<td>0.13</td>
<td>0.11</td>
<td>0.10</td>
<td>0.08</td>
<td>3</td>
<td>0.32</td>
<td>0.27</td>
<td>0.23</td>
<td>0.17</td>
<td>0.14</td>
<td>0.11</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>4</td>
<td>0.25</td>
<td>0.18</td>
<td>0.15</td>
<td>0.13</td>
<td>0.11</td>
<td>0.09</td>
<td>0.09</td>
<td>0.07</td>
<td>4</td>
<td>0.28</td>
<td>0.24</td>
<td>0.20</td>
<td>0.15</td>
<td>0.12</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>5</td>
<td>0.20</td>
<td>0.15</td>
<td>0.12</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
<td>5</td>
<td>0.24</td>
<td>0.20</td>
<td>0.17</td>
<td>0.13</td>
<td>0.10</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>6</td>
<td>0.15</td>
<td>0.11</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>6</td>
<td>0.19</td>
<td>0.16</td>
<td>0.14</td>
<td>0.11</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>7</td>
<td>0.10</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>7</td>
<td>0.15</td>
<td>0.12</td>
<td>0.10</td>
<td>0.08</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>8</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>8</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Tablo 2.9: Periyod ve göreli kat ötelenme talebi değerleri (devam ediyor) [35].

Çerçeveyi tipi: B2 Birinci doğal periyodu, \(T \), ve göreli katlar arasında ötelenme talebinin kat yüksekliğine oranı, \(dr = \frac{(d_i - d_{i-1})}{h_i} \)

<table>
<thead>
<tr>
<th>Frame</th>
<th>Model</th>
<th>T (sec.)</th>
<th>Story</th>
<th>Dr(%)</th>
<th>Dr(%)</th>
<th>Dr(%)</th>
<th>Dr(%)</th>
<th>Dr(%)</th>
<th>Dr(%)</th>
<th>Dr(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1,135</td>
<td>1</td>
<td>0,79</td>
<td>0,68</td>
<td>0,49</td>
<td>0,39</td>
<td>0,28</td>
<td>0,24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,016</td>
<td>2</td>
<td>0,24</td>
<td>0,21</td>
<td>0,15</td>
<td>0,12</td>
<td>0,12</td>
<td>0,13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,763</td>
<td>3</td>
<td>0,18</td>
<td>0,20</td>
<td>0,12</td>
<td>0,14</td>
<td>0,18</td>
<td>0,20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,637</td>
<td>4</td>
<td>0,18</td>
<td>0,12</td>
<td>0,15</td>
<td>0,10</td>
<td>0,10</td>
<td>0,06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,518</td>
<td>5</td>
<td>0,78</td>
<td>0,63</td>
<td>0,46</td>
<td>0,35</td>
<td>0,32</td>
<td>0,29</td>
<td>0,22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,490</td>
<td>6</td>
<td>0,28</td>
<td>0,23</td>
<td>0,17</td>
<td>0,13</td>
<td>0,12</td>
<td>0,11</td>
<td>0,08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,404</td>
<td>7</td>
<td>0,40</td>
<td>0,28</td>
<td>0,34</td>
<td>0,23</td>
<td>0,24</td>
<td>0,22</td>
<td>0,14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,290</td>
<td></td>
<td>0,18</td>
<td>0,12</td>
<td>0,15</td>
<td>0,10</td>
<td>0,11</td>
<td>0,10</td>
<td>0,06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,029</td>
<td>8</td>
<td>0,88</td>
<td>0,66</td>
<td>0,49</td>
<td>0,35</td>
<td>0,29</td>
<td>0,24</td>
<td>0,14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,891</td>
<td>9</td>
<td>0,34</td>
<td>0,25</td>
<td>0,19</td>
<td>0,14</td>
<td>0,12</td>
<td>0,10</td>
<td>0,06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,802</td>
<td></td>
<td>0,26</td>
<td>0,19</td>
<td>0,15</td>
<td>0,27</td>
<td>0,21</td>
<td>0,19</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,717</td>
<td>10</td>
<td>0,37</td>
<td>0,22</td>
<td>0,26</td>
<td>0,18</td>
<td>0,14</td>
<td>0,13</td>
<td>0,07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,666</td>
<td></td>
<td>0,16</td>
<td>0,09</td>
<td>0,12</td>
<td>0,14</td>
<td>0,17</td>
<td>0,19</td>
<td>0,07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,542</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tablo 2.9 Periyod ve göreli kat ötelenme talebi değerleri (devam ediyor) [35].

Çerçeve tipi: B2 Birinci doğal periyodu, T, ve göreli katlar arası ötelenme talebinin kat yüksekliğine oranı, \(\text{dr} = \frac{(d_i - d_{i-1})}{h_i} \)

<table>
<thead>
<tr>
<th>frame model</th>
<th>85b2</th>
<th>81b2</th>
<th>82b2</th>
<th>83b2</th>
<th>84b2</th>
<th>86b2</th>
<th>87b2</th>
<th>88b2</th>
<th>frame model</th>
<th>93b2</th>
<th>94b2</th>
<th>95b2</th>
<th>91b2</th>
<th>92b2</th>
<th>96b2</th>
<th>97b2</th>
<th>98b2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (sec.)</td>
<td>1,586</td>
<td>1,269</td>
<td>1,090</td>
<td>0,928</td>
<td>0,816</td>
<td>0,719</td>
<td>0,671</td>
<td>0,563</td>
<td>T (sec.)</td>
<td>1,826</td>
<td>1,522</td>
<td>1,435</td>
<td>1,160</td>
<td>0,922</td>
<td>0,738</td>
<td>0,682</td>
<td>0,626</td>
</tr>
<tr>
<td>story</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>story</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dr(%)</td>
<td>0,78</td>
<td>0,52</td>
<td>0,44</td>
<td>0,36</td>
<td>0,31</td>
<td>0,27</td>
<td>0,25</td>
<td>0,20</td>
<td>0,83</td>
<td>0,68</td>
<td>0,54</td>
<td>0,40</td>
<td>0,32</td>
<td>0,26</td>
<td>0,22</td>
<td>0,19</td>
<td></td>
</tr>
<tr>
<td>dr(%)</td>
<td>0,32</td>
<td>0,22</td>
<td>0,19</td>
<td>0,16</td>
<td>0,13</td>
<td>0,12</td>
<td>0,11</td>
<td>0,09</td>
<td>0,35</td>
<td>0,29</td>
<td>0,23</td>
<td>0,17</td>
<td>0,14</td>
<td>0,11</td>
<td>0,10</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td>dr(%)</td>
<td>0,29</td>
<td>0,20</td>
<td>0,17</td>
<td>0,14</td>
<td>0,12</td>
<td>0,11</td>
<td>0,10</td>
<td>0,08</td>
<td>0,32</td>
<td>0,26</td>
<td>0,21</td>
<td>0,16</td>
<td>0,13</td>
<td>0,11</td>
<td>0,09</td>
<td>0,08</td>
<td></td>
</tr>
<tr>
<td>dr(%)</td>
<td>0,25</td>
<td>0,30</td>
<td>0,24</td>
<td>0,19</td>
<td>0,16</td>
<td>0,14</td>
<td>0,12</td>
<td>0,10</td>
<td>0,28</td>
<td>0,23</td>
<td>0,33</td>
<td>0,22</td>
<td>0,17</td>
<td>0,14</td>
<td>0,12</td>
<td>0,10</td>
<td></td>
</tr>
<tr>
<td>dr(%)</td>
<td>0,20</td>
<td>0,25</td>
<td>0,20</td>
<td>0,16</td>
<td>0,13</td>
<td>0,11</td>
<td>0,10</td>
<td>0,08</td>
<td>0,43</td>
<td>0,20</td>
<td>0,29</td>
<td>0,19</td>
<td>0,15</td>
<td>0,12</td>
<td>0,10</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td>dr(%)</td>
<td>0,28</td>
<td>0,20</td>
<td>0,15</td>
<td>0,12</td>
<td>0,16</td>
<td>0,13</td>
<td>0,12</td>
<td>0,09</td>
<td>0,36</td>
<td>0,17</td>
<td>0,24</td>
<td>0,16</td>
<td>0,20</td>
<td>0,10</td>
<td>0,12</td>
<td>0,14</td>
<td></td>
</tr>
<tr>
<td>dr(%)</td>
<td>0,18</td>
<td>0,23</td>
<td>0,27</td>
<td>0,21</td>
<td>0,11</td>
<td>0,09</td>
<td>0,08</td>
<td>0,06</td>
<td>0,28</td>
<td>0,30</td>
<td>0,33</td>
<td>0,40</td>
<td>0,15</td>
<td>0,11</td>
<td>0,10</td>
<td>0,11</td>
<td></td>
</tr>
<tr>
<td>dr(%)</td>
<td>0,08</td>
<td>0,10</td>
<td>0,12</td>
<td>0,09</td>
<td>0,15</td>
<td>0,11</td>
<td>0,10</td>
<td>0,06</td>
<td>0,39</td>
<td>0,20</td>
<td>0,22</td>
<td>0,29</td>
<td>0,18</td>
<td>0,07</td>
<td>0,16</td>
<td>0,18</td>
<td></td>
</tr>
<tr>
<td>dr(%)</td>
<td>0,17</td>
<td>0,09</td>
<td>0,10</td>
<td>0,13</td>
<td>0,08</td>
<td>0,03</td>
<td>0,07</td>
<td>0,08</td>
<td>0,17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tablo 2.9 Periyod ve göreli kat ötelenme talebi değerleri (devam ediyor) [35].

Çerceve tipi: C1 Birinci doğal periyodu, T_1 ve göreli katlararası ötelenme talebinin kat yüksekliğe oranını, $dr = \frac{(d_i - d_{i-1})}{h_i}$

<table>
<thead>
<tr>
<th>Frame Model</th>
<th>36c1</th>
<th>31c1</th>
<th>32c1</th>
<th>33c1</th>
<th>34c1</th>
<th>35c1</th>
<th>Frame Model</th>
<th>67c1</th>
<th>61c1</th>
<th>62c1</th>
<th>63c1</th>
<th>65c1</th>
<th>66c1</th>
<th>68c1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (sec.)</td>
<td>1,052</td>
<td>0,937</td>
<td>0,690</td>
<td>0,580</td>
<td>0,456</td>
<td>0,421</td>
<td>T (sec.)</td>
<td>1,115</td>
<td>1,008</td>
<td>0,775</td>
<td>0,616</td>
<td>0,540</td>
<td>0,502</td>
<td>0,417</td>
</tr>
<tr>
<td>Story 1</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>Story 1</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
</tr>
<tr>
<td>2</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>2</td>
<td>0,01</td>
<td>0,01</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>3</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>3</td>
<td>0,01</td>
<td>0,01</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Frame Model</td>
<td>47c1</td>
<td>41c1</td>
<td>42c1</td>
<td>43c1</td>
<td>44c1</td>
<td>45c1</td>
<td>46c1</td>
<td>Frame Model</td>
<td>76c1</td>
<td>75c1</td>
<td>71c1</td>
<td>72c1</td>
<td>73c1</td>
<td>74c1</td>
</tr>
<tr>
<td>T (sec.)</td>
<td>1,098</td>
<td>0,895</td>
<td>0,729</td>
<td>0,571</td>
<td>0,535</td>
<td>0,493</td>
<td>0,401</td>
<td>T (sec.)</td>
<td>1,149</td>
<td>0,928</td>
<td>0,775</td>
<td>0,625</td>
<td>0,486</td>
<td>0,410</td>
</tr>
<tr>
<td>Story 2</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>Story 2</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
</tr>
<tr>
<td>1</td>
<td>0,90</td>
<td>0,70</td>
<td>0,55</td>
<td>0,41</td>
<td>0,38</td>
<td>0,34</td>
<td>0,23</td>
<td>1</td>
<td>0,98</td>
<td>0,76</td>
<td>0,62</td>
<td>0,48</td>
<td>0,36</td>
<td>0,25</td>
</tr>
<tr>
<td>2</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>2</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>3</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>3</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>4</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>4</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Frame Model</td>
<td>55c1</td>
<td>51c1</td>
<td>52c1</td>
<td>53c1</td>
<td>54c1</td>
<td>56c1</td>
<td>57c1</td>
<td>Frame Model</td>
<td>76c1</td>
<td>75c1</td>
<td>71c1</td>
<td>72c1</td>
<td>73c1</td>
<td>74c1</td>
</tr>
<tr>
<td>T (sec.)</td>
<td>1,238</td>
<td>0,959</td>
<td>0,768</td>
<td>0,604</td>
<td>0,519</td>
<td>0,454</td>
<td>0,319</td>
<td>T (sec.)</td>
<td>1,149</td>
<td>0,928</td>
<td>0,775</td>
<td>0,625</td>
<td>0,486</td>
<td>0,410</td>
</tr>
<tr>
<td>Story 3</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>Story 3</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
<td>dr(%)</td>
</tr>
</tbody>
</table>
Tablo 2.9: Periyod ve göreli kat ötelenme talepleri (devam ediyor) [35].

Çerçeve tipi: C1 Birinci doğal periyodu, T1 ve göreli katlar arası ötelenme talebinin kat yüksekliğine oranı, \(dr = \frac{(d_i - d_{i-1})}{h_i} \)

<table>
<thead>
<tr>
<th>frame model</th>
<th>85c1</th>
<th>81c1</th>
<th>82c1</th>
<th>83d</th>
<th>84c1</th>
<th>86c1</th>
<th>87d</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (sec.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,177</td>
<td>0,906</td>
<td>0,782</td>
<td>0,673</td>
<td>0,589</td>
<td>0,524</td>
<td>0,490</td>
</tr>
<tr>
<td>story</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,990</td>
<td>0,750</td>
<td>0,630</td>
<td>0,520</td>
<td>0,440</td>
<td>0,380</td>
<td>0,350</td>
</tr>
<tr>
<td>2</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,020</td>
<td>0,020</td>
<td>0,020</td>
<td>0,020</td>
</tr>
<tr>
<td>3</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,020</td>
<td>0,020</td>
<td>0,020</td>
<td>0,020</td>
</tr>
<tr>
<td>4</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,020</td>
<td>0,020</td>
<td>0,020</td>
<td>0,020</td>
</tr>
<tr>
<td>5</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
</tr>
<tr>
<td>6</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
</tr>
<tr>
<td>7</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
</tr>
<tr>
<td>8</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
</tr>
<tr>
<td>9</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>frame model</th>
<th>93c1</th>
<th>94c1</th>
<th>95c1</th>
<th>91c1</th>
<th>92c1</th>
<th>96c1</th>
<th>97c1</th>
<th>98d</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (sec.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,254</td>
<td>1,116</td>
<td>0,967</td>
<td>0,770</td>
<td>0,629</td>
<td>0,525</td>
<td>0,474</td>
<td>0,428</td>
</tr>
<tr>
<td>story</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,150</td>
<td>0,940</td>
<td>0,820</td>
<td>0,630</td>
<td>0,490</td>
<td>0,380</td>
<td>0,330</td>
<td>0,270</td>
</tr>
<tr>
<td>2</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
</tr>
<tr>
<td>3</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
</tr>
<tr>
<td>4</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
</tr>
<tr>
<td>5</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
</tr>
<tr>
<td>6</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
</tr>
<tr>
<td>7</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
</tr>
<tr>
<td>8</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
</tr>
<tr>
<td>9</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
<td>0,010</td>
</tr>
</tbody>
</table>
Birinci kat planından her iki ortogonal doğrultu için hesaplanacak kolonların toplam atalet momentleri aşağıdaki formüller ile ifade edilmiştir. Denklem (2.33), (2.34).

\[I_x = \sum_{i=1}^{n} (I_{x})_i \]
(2.33)

\[I_y = \sum_{i=1}^{n} (I_{y})_i \]
(2.34)

Burada, \((I_{x})_i\) ve \((I_{y})_i\) i'ninci kolonun x ve y akslarına göre olan atalet momentlerini m\(^4\) birim cinsinden ifade etmektedir.

Kapasite hesabında kullanılan kolon boyu o kolonun ankestre boyuna eşit olup \(I_{\text{can}}\) ifadesiyle tanımlanmaktadır. \(I_{\text{can}}\) metre cinsinden kolonun yarı uzunluğuna eşittir. Yapılan varsayımlar, kolonların düğüm noktalarına rijit bağlanması, deformelerin yatay yüklemelerde rijit bir şekilde davranması ve yanal ötelenmelerden dolayı kolonların orta mesafesinde oluşacak momentlerin sıfır olmasıdır. Şekil 2.6 kolonların yatay ötelenme kapasitelerini göstermektedir [35].

Şekil 2.6 Kolonların Yatay Ötelenme ve Süncklik Kapasiteleri ρ₁=1% [35].
Şekil 2.6 Kolonların Yatay Ötelenme ve Süneklik Kapasiteleri $p_1=\%1$ (Devam Ediyor) [35].
Şekil 2.6 Kolonların Yatay Ötelenme ve Süneklik Kapasiteleri $\rho_1 = \% 1$ (Devam Ediyor) [35].

Yapılan dinamik hesaplamalarda yatay yük azalma katsayı R=4 olarak alınmıştır. Dolayısıyla, seçilen göreli kat ötelenmeleri 4 ile çarpılması ve kolonun gerçek yatay ötelenme kapasitesiyle karşılaştırılması gerekmektedir [35].
Tablo 2.10.- Hızlı Değerlendirme Yöntemlerinde Dikkate Alınan Parametreler [42]

<table>
<thead>
<tr>
<th>Parametreler</th>
<th>2.1</th>
<th>2.2</th>
<th>2.3</th>
<th>2.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yapı tipi</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Yapının mevcut durumu</td>
<td>G</td>
<td>-</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Kolon, perde alanları</td>
<td>A</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Kolon, perde atalet</td>
<td>A</td>
<td>-</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Dolgu duvar alanları</td>
<td>A</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Dolgu duvar atalet</td>
<td>-</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Dolgu duvar tipi</td>
<td>A</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Bina yüksekliği veya kat</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Hiperstatiklik (aks adedi)</td>
<td>-</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Burulma düzensizliği</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Düşeme süresizliği</td>
<td>-</td>
<td>A</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Düşey doğrultuda süresizlik</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Kütle süresizliği</td>
<td>-</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Korozyon mevcudiyeti</td>
<td>-</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Ağır cephe elemanları</td>
<td>G</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Asma kat mevcudiyeti</td>
<td>-</td>
<td>A</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Katlarda seviye farkı</td>
<td>-</td>
<td>-</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Kismi bodrum</td>
<td>-</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Beton kalitesi</td>
<td>-</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Zayıf kolon - güçlü kiriş</td>
<td>-</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Etriyi sıklıği</td>
<td>-</td>
<td>-</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Kısa kolon</td>
<td>A</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Yumuşak / zayıf kat</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Çıkmalar, çerçeve</td>
<td>G</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Çarpışma</td>
<td>G</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Bina önem katsayısı</td>
<td>A</td>
<td>-</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Hareketli yük çarpanı</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Yapım ve işçilik kalitesi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bina yaşısı</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zemin sınıf</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Temel tipi ve derinliği</td>
<td>-</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Sıvılaşma potansiyeli</td>
<td>-</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Toprak hareketleri</td>
<td>-</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Deprem bölgesi</td>
<td>-</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Etkin yer ivmesi</td>
<td>-</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Topografik koşullar</td>
<td>A</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Deprem merkezine uzaklık</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Denenenmiş hasarlı bina sayısı</td>
<td>0</td>
<td>2</td>
<td>329</td>
<td>0</td>
</tr>
<tr>
<td>Hasarsız binalarda başarı %</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Orta hasarlı binalarda başarı</td>
<td>-</td>
<td>100</td>
<td>92</td>
<td>-</td>
</tr>
<tr>
<td>Ağır hasarlı binalarda başarı</td>
<td>-</td>
<td>100</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Yıkılmış binalarda başarı %</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
</tbody>
</table>

G: Gözlemesel olarak dikkate alınan, A: Analitik olarak dikkate alınan, -: Dikkate almayan
3. ÖRNEK BİNA BİLGİLERİ VE ÖRNEK BİNA KULLANILARAK DAHA ÖNCEDEN YAPILmiş ÇALIŞMA VE SONUÇLARI

Kaynak [36]'da yapılan çalışmada 17 Ağustos 1999 Kocaeli depreminde orta hasar görmüş betonarme (BA) çerçevelerden oluşan taşiyıcı sisteme sahip dört katlı düşük beton dayanımı bina, öncelikle Japonya Mimarlık Enstitüsü (AIJ) tarafından geliştirilmiş ve yapıların depreme dayanıklılıklarının hızlı değerlendirilmesine olanak sağlayan ampirik esaslı indeksler (S_{eq}) ile incelenmiştir. Gözlemlenen hasar durumu ile indeks sonuçlarının uyumluluğu araştırılmıştır. Daha sonra [37]'de tanımlanan zaman tanım alanında hesap yöntemi kapsamında öncelikle 7 adet deprem kayıdan oluşan hesaplar yapılmıştır. Daha sonra ise, benzetilmiş deprem yer hareketi üretilerek binanın mevcut durumu için doğrusal olmayan dinamik çözümleme yöntemi uygulanmış ve yapısal nicelik gösteriminin önemli öğelerinden olan en büyük yerdeğişirmeye, taban kesme kuvveti, devrilme momenti ve yerdeğiştirme sünekli istemleri hesaplanmıştır. Çalışmanın sonuçları bölümünde her üç yöntem için elde edilen bulguların yapının mevcut durumu ile uyumluluğu gösterilmiştir.

17 Ağustos 1999 Kocaeli depreminde orta hasar görmüş betonarme çerçeve taşiyıcı sisteme sahip dört katlı konut binasına ait zemin kat kalıp planı Şekil 3.1'de verilmektedir. Binada malzeme kalitesi C14 betonu ve S220 çelişdir. Kat yükseklikleri birbirine eşit olup 3.0m dir ve kat ağırlıkları 3. normal katta 3300 kN, 2.,1. ve zemin katlarda ise 4600 kN'dur [36].

Binada kiriş boyutları 20/60 cm/cm; kolon boyutları ise zemin ve 1.normal katlarda 25x50cm~25x60cm olup, 2. ve 3. normal katlarda enkesit boyutları küçülerek tüm kolonlar için 25x40cm değerlerine düşmektedir. Aşağıdaki Tablo 3.1, kolonlara ait karakteristik özellikleri özetlemektedir, enkesit alanı A_c ile kesit yelemsizlik momenti I_{xy} donatıların dikkate alınması sonucu hesaplanmış esdeğer kesite işaret etmektedir. M_{cr}, M_{y} ve M_{u} sırasıyla kolonun çatlama, akma ve taşma gücü momentleri olup N kolona etkiyen eksenel kuvvettir.
Şekil 3.1. İncelenen Binaya Ait Zemin Kat Kalıp Planı[36].
Tablo 3.1. İncelenen Binaya Ait Kolonların Yapısal Özellikleri [36].

<table>
<thead>
<tr>
<th>b (m)</th>
<th>h (m)</th>
<th>(A_c) (m²)</th>
<th>(l_y.y) (x10⁶m³)</th>
<th>N (kN)</th>
<th>(M_{cr}) (kNm)</th>
<th>(M_y) (kNm)</th>
<th>(M_u) (kNm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.60</td>
<td>0.158</td>
<td>4.951</td>
<td>420.0</td>
<td>21.6</td>
<td>110.0</td>
<td>113.4</td>
</tr>
<tr>
<td>0.25</td>
<td>0.60</td>
<td>0.158</td>
<td>4.951</td>
<td>560.0</td>
<td>21.6</td>
<td>127.0</td>
<td>132.3</td>
</tr>
<tr>
<td>0.25</td>
<td>0.60</td>
<td>0.158</td>
<td>4.951</td>
<td>442.5</td>
<td>21.6</td>
<td>148.0</td>
<td>151.2</td>
</tr>
<tr>
<td>0.25</td>
<td>0.60</td>
<td>0.158</td>
<td>4.951</td>
<td>533.3</td>
<td>21.6</td>
<td>163.0</td>
<td>163.8</td>
</tr>
<tr>
<td>0.60</td>
<td>0.25</td>
<td>0.158</td>
<td>0.837</td>
<td>528.8</td>
<td>8.8</td>
<td>61.0</td>
<td>65.6</td>
</tr>
<tr>
<td>0.25</td>
<td>0.50</td>
<td>0.131</td>
<td>2.903</td>
<td>215.0</td>
<td>15.2</td>
<td>86.0</td>
<td>87.5</td>
</tr>
<tr>
<td>0.25</td>
<td>0.50</td>
<td>0.131</td>
<td>2.903</td>
<td>277.5</td>
<td>15.2</td>
<td>95.0</td>
<td>100.6</td>
</tr>
<tr>
<td>0.25</td>
<td>0.50</td>
<td>0.131</td>
<td>2.903</td>
<td>350.0</td>
<td>15.2</td>
<td>106.0</td>
<td>109.4</td>
</tr>
<tr>
<td>0.25</td>
<td>0.50</td>
<td>0.131</td>
<td>2.903</td>
<td>438.8</td>
<td>15.2</td>
<td>115.0</td>
<td>118.1</td>
</tr>
<tr>
<td>0.50</td>
<td>0.25</td>
<td>0.131</td>
<td>0.688</td>
<td>202.5</td>
<td>7.2</td>
<td>34.0</td>
<td>35.0</td>
</tr>
<tr>
<td>0.50</td>
<td>0.25</td>
<td>0.131</td>
<td>0.688</td>
<td>359.4</td>
<td>7.2</td>
<td>44.0</td>
<td>48.1</td>
</tr>
<tr>
<td>0.25</td>
<td>0.40</td>
<td>0.104</td>
<td>1.452</td>
<td>122.0</td>
<td>9.5</td>
<td>44.0</td>
<td>47.6</td>
</tr>
<tr>
<td>0.25</td>
<td>0.40</td>
<td>0.104</td>
<td>1.452</td>
<td>239.0</td>
<td>9.5</td>
<td>58.0</td>
<td>61.6</td>
</tr>
<tr>
<td>0.25</td>
<td>0.40</td>
<td>0.104</td>
<td>1.452</td>
<td>320.0</td>
<td>9.5</td>
<td>71.0</td>
<td>72.8</td>
</tr>
<tr>
<td>0.40</td>
<td>0.25</td>
<td>0.104</td>
<td>0.558</td>
<td>107.0</td>
<td>5.8</td>
<td>25.0</td>
<td>26.3</td>
</tr>
<tr>
<td>0.40</td>
<td>0.25</td>
<td>0.104</td>
<td>0.558</td>
<td>231.7</td>
<td>5.8</td>
<td>34.0</td>
<td>36.8</td>
</tr>
</tbody>
</table>

1968 Tokachi-Oki depremi sonrasında okul binaları için yapılan araştırmaların sonucunda, elastik deprem yüklemesinin sonrasında kayma gerilmelerinin 2 MPa’yi aşması ile \(h_0/h_s < 3.0 \) durumu için kayma kırılmasının oluştuğu gözlemmiştir [38]. 1978 Miyagiken-Oki depreminden sonra 1982’de Tokyo’da 90 adedi apartman yapı olmak üzere toplam 362 binada depreme dayanıklılık araştırması yapılmış ve Japonya Mimarlık Enstitüsü AIJ’in ampirik olarak verdiği \(S_{BG} \) katsayıları saptanmıştır. Bu araştırmaya ait sonuçlar ile 1983 yılında ülkemizde KAF üzerinde Bolu yöresinde yapılan araştırma sonuçları karşılaştırılarak olarak Şekil 3.2’de görülmektedir.

Buna göre betonarme yapılarda depreme dayanıklılığın kabaca bir göstergesi olmak üzere, taşıma güçünün zayıf olduğu eksen doğrultusunda hesaplanan \(S_{BG} \) indisi kullanılarak dört grupta toplanmıştır.
S_{BG} \geq 1.0 \quad \text{Depreme karışı çok dayanıklı}

0.6 \leq S_{BG} < 1.0 \quad \text{Depreme karışı oldukça dayanıklı}

0.4 \leq S_{BG} < 0.6 \quad \text{Depreme karışı yetersiz}

S_{BG} < 0.4 \quad \text{Depreme karışı dayanıksız}

Bu indisin hesabında, deneysel verilerden yararlanılarak zeminin taşıma kapasitesini yırtması, sıvılaşma gibi durumlar dışında, betonun dayanımı C20, çekme donatısı oranı %0.6 ve hacimsel enine donatı oranı %0.159 alınarak,

\[S_{BG} = \frac{s_{B1}^2}{s_{B1} + s_{B2} + s_{B3}} + S_{B2} + s_{B3} \] \quad (3.1)

\[S_{B1} = \frac{\Sigma (A_{C1} \tau_1)}{W} \quad S_{B2} = \frac{\Sigma (A_{C2} \tau_2)}{W} \quad S_{B3} = \frac{(C_1 \Sigma A_{w1} + C_2 \Sigma A_{w2})}{W} \] \quad (3.2)

ifadeleri verilmiştir. Burada, A_{w1} ve A_{w2} kolonla birleşik ve kolonla birleşik olmayan perde, A_{C1} ve A_{C2} sırasıyla eğilme davranış ve kayma davranış gösteren kolonları ve bunlar için alınacak C_{1} ve C_{2} katsayıları da C20 için 30 ve 20 değerlerinde olmak kaydıyla tanımlanmıştır [36]. Diğer yandan,

\[\tau_1 = \frac{C_{B1}}{R_{H}} \quad \tau_2 = \frac{C_{B2}}{(0.56R_{H} + 0.12)} + 6.31 \] \quad (3.3)
olmak kaydıyla, C_{B1} ve C_{B2} C20 beton kalitesi için sırasıyla 47.16 ve 15.50 olarak verilmiştir [39].

Binada kullanılan beton kalitesinin C14 olduğunu dikkate alınarak C_{B1} ve C_{B2} katsayılıarı için 39.6 ve 11.2 değerleri kullanılmış olup, yapının zayıf olduğu y-y doğrultusunda depreme dayanıklılık indeksi S_{BG} =0.12 olarak hesaplanmış ve depreme karşı dayanıksız olduğu anlaşılmıştır [36].

Mevcut yapının dinamik çözümlemesi sonucunda binanın titreşim periyotları T_1=0.624s, T_2=0.226s, T_3=0.144s ve T_4=0.099s değerlerinde hesaplanmıştır [40]. Şekil 3.3’de 7 adet ivme kaydı etkisinde binanın katlarında hesaplanan en büyük yerdeğişirmeler ile göreli ötelenmelere ait zarflar sunulmaktadır. Gördüğü üzere göreli kat ötelenmeleri, binanın üçüncü katında kolon boyutlarının küçülmesi sonucu azalan rijitliğe bağlı olarak sığrama göstererek bu katta en büyük değerlere ulaşmaktadır.

![Şekil 3.3 Katların En Büyük (Sol) ve Göreli (Sağ) Yer Değişirmeleri [36]](image)

Yapısal davranışın irdelenmesi bakımından önemli bir nicelik göstergesi olan yerdeğişirme sünekliği, μ her bir deprem kaydı etkisinde hesaplanmıştır. Yerdeğiştirme sünekliğinin hesaplanması için akma (U_y) ve göçme (U_u) anlarındanaki yerdeğiştirmelerin bilinmesi gerektiğiinden, bu amaçla yapının göçme anına karar vermek için bir çok kabul yapılmıştır [41]. Birinci kabule göre göçmenin herhangi bir kattaki kolonların %50’sinin alt ya da üst uçlarında plastik mafsal oluşumunun gerçekleştiği ana karşı gelen en üst kat yerdeğiştirmesi göçme yerdeğiştirmesi olarak kabul edilmiş ve μ₁
sünekliği hesaplanmıştır. İkinci kabulde ise herhangi bir kattaki kolonların %50'sinde hem üst hem de alt uçlarında plastik mafsal oluştuğu ana karşı gelen en üst kat yerdeğiştirmesi göcme yerdeğiştirmesi olarak kabul edilmiş ve \(\mu_2 \) sünekliği hesaplanmıştır. Her iki kabulde de akma yerdeğiştirmesi, herhangi bir kolonda akma kapasitesinin aşılması sonucunda belirlenen çatı yerdeğiştirmesi değeri olarak alınmıştır. Bu kabullerle ortalama yerdeğiştirme süneklik istemleri \(\mu_1 = 1.53 \) ve \(\mu_2 = 2.00 \) olarak hesaplanmıştır [36].

Yapıda plastik mafsalların oluşumları ve yerleri de incelenen diğer bir unsurdur. Binanın ilk iki katındaki tüm elemanların akma sevilerini aşıkları belirlenmiştir, genel olarak üçüncü ve dördüncü katlardaki kirişlerin elastik kaldıkları, ancak kolonlarda plastik mafsal oluşum gözlenmiştir. Bu durum, zayıf kolon-kuvvetli kiriş oluşumu yaratmaktadır, binanın gerçekten maruz kaldığı orta hasar durumunu açıklamaktadır. Oluşan plastik mafsalların konumları örnek olarak Sakarya kaydı için Şekil 3.4'te gösterilmektedir.

Şekil 3.4 Yapıda Sakarya Kaydı Etkisinde Oluşan Plastik Mafsallar [36].
Bu tez çalışmasında da örnek bina olarak kullanılan, [36]'da yapılan çalışmada 17 Ağustos 1999 Kocaeli depreminde orta hasar görmüş olan dört katlı betonarme çerçeveleden oluşan taşyıcı sisteme ve C14, S220 yapı malzemeleri kalitesine sahip bir konut yapısı öncelikle Japonya Mimarlık Enstitüsü (AIJ) tarafından önerilen ampirik S_{BG} indeksleri ile incelenmiştir. Yapıların hızlı bir biçimde depreme dayanıklılığın değerlendirilmesinde bir göstere olan bu indeks değeri, mevcut bina için 0.12 olarak hesaplanmıştır, yapının depreme karşı dayanıksız olduğu anlaşılmıştır. Bu durum, yapının gerçekte karşılaştığı orta hasar durumu ile de uyumludur.

Kaynak [37]'nin "Depremde Bina Performansının Doğrusal Elastik Olmayan Yöntemler ile Belirlenmesi" bölümünde tanımlanan zaman tanım alanında doğrusal olmayan hesap yöntemi ile ihraç edilmiştir. 7 adet kuvvetli hareket kaydı binaya etkilerken yapının nispeten zayıf olduğu y-y doğrultusunda doğrusal olmayan dinamik çözümlemeler yapılmıştır. Hesap sonuçlarına göre en büyük çatı yerdeğişmesi istemi hesaplanmıştır. Çözümleme sonuçlarının ortalama değerlerinden yola çıkılarak iki farklı yaklaşıma tabii giren birakılan orijinal isimsel birakılmasına 1.53 ışık, ikinci yaklaşım ile yaklaşık %31 artarak $\mu_2 = 2.00$ düzeyine yükselmiştir. Katlara ait yerdeğişirmelerin genel olarak deprem çalışmaları incelendiğinde kuvvetli hareketin karakteristiklerine bağlı olarak oldukça farklı değerlerin oluştuğu ancak her bir kayıt için 2. ve 3.normal katlar arasında, kolon enkesit boyutlarının küçülmesine bağlı olarak ani saçamaların oluştuğu gözlenmiştir. Plastik mafsalların oluşum zamanları ve konumları incelendiğinde ise ilk iki kattaki tüm elemanların akma sevilerini aşmaları belirlenmiş, genel olarak üçüncü ve dördüncü katlardaki kirişlerin elastik kaldıkları, ancak kolonlarda yer yer plastik mafsa olumlu gözlenmiştir. Bu durum, zayıf kolon-kuvvetli kiriş durumu yaratmakta olup, binanın gerçekte maruz kaldığı orta hasar durumunu açıklamaktadır.

Diğer aşamada, bölgenin depremselliğini ve zemin koşullarına uygun olarak tanımlanan tasarım spektrumu ile uyumlu benzeştirmiş yer hareketi üretmiştir. Üretilen deprem kaydında en büyük ivme değeri 392.4 cm/s2 olup bu değer 0.40g yer ivmesine karşı gelmemektedir. Önceki hesaplamalarına ek olarak, benzeştirmiş yer hareketi de binaya etkilererek yapısal istemler araştırılmıştır. Hesap sonuçlarına göre en büyük çatı yerdeğişirmesi istemi bulunmuş olup, bu değerlerin 7 adet deprem etkisindeki doğrusal
olmayan dinamik çözümleme bulguları ortalamasına oldukça yakın değerler verdiği anlaşılmakta.

Daha sonra ise [37]'de Artımsal İtme Analizi ile Performans Değerlendirmesinde İzlenecek Yol bölümünde açıklanan artımsal eş değer deprem yükü yöntemi ile kapasite ve istem spektrumlarını hesaplanmış ve y-y doğrultusundaki tepe yerdeğiştirme istemi bulunmuştur. Bu değer, doğrusal olmayan dinamik çözümle sonuçlarıyla karşılaştırıldığında, doğrusal olmayan statik ve dinamik çözümleme bulgularının oldukça örtüşmekte olduğu sonucunu doğurmaktadır [36].
4. SEÇİLEN HIZLI DEĞERLENDİRME YÖNTEMLERİ İLE ÖRNEK BİNAĞIN İNCELENMESİ

4.1. Kapasite-Talep Oranı Yöntemi İle Örnek Binanın İncelenmesi

Kapasite-Talep Oranı yöntemi ile örnek binanın zemin katı ve zayıf olan y-y yönünde incelendiğinde binaya en uygun olan çerçeve türü B2 olarak seçilmiştir (Şekil 2.5). Bu türün seçimindeki en önemli etken kolon boyutlarının yukarı doğru küçülmesidir. Örnek binada bodrum kat bulunmayıp toplamda kat adedi 4 tür. Binanın zemin katında 34 adet kolon bulunmaktadır ve perde bulunmamaktadır. Binanın oturduğu zemin sınıfları Z2 olup birinci dereceden deprem bölgesinde yer almaktadır (A0=0.4g). Binanın zemin, 1., 2. Katları 460 ton 3. Katı 330 ton olup bir katı 17.5*17.5=306.25 m² dir. Buna göre ortalama kat ağırlığı 1.4 ton/m² dir [36]. Örnek binada y-y yönünde incelene görülünden binanın en alt katındaki kolonların x-x yönündeki atale momentleri toplamı Denklem (2.33) yardımcı ile 0.021 m⁴ olarak bulunur.

Örnek bına B2 türünde olduğundan periyot formülünde kullanılacak olan C₁ ve C₂ kat sayıları Tablo 2.8 den sırasıyla 14*10⁻³ ve 4*10⁻³ olarak alınır. Denklem (2.32) kullanılarak y yönü için birinci doğal periyot Tₐ=1.2 sn olarak bulunur.

Tablo 2.9 dan bına çerçeve türü ve periyoduna göre örnek binanın model numarası 47b2 kabul edilmiştir. Buna göre yapılan doğrusal enterpolasyon ile dr (görelî kat ötelenme yüzdeleri) değerleri 1. katta 0.73, 2. Katta 0.26, 3. Katta 0.38, 4. Katta 0.16 çıkmaktadır.

Modifiye edilmiş katlar arası ötelenme talep değeri en alt katın değeri olan 0.73’dür. Bu değer 4 ile çarpıldığında büyütülmüş katlar arası ötelenme talep değeriine 2.92’ye ulaşılır. Rijit doşeme varsayımından, bir kattaki herhangi bir kolonun görelî kat ötelenmesi, o katın görelî ötelenmesine eşittir. 0.73 görelî kat ötelenmesine sahip en alt kattaki tüm kolonların görelî kat ötelenmeleri de 0.73 tür.
Örnek binanın en alt katından sadece bir kolonun (seçilen kolon için, \(b = 0.25 \text{ m}, \ h = 0.60 \text{ m} \))\n\(A_k = 0.104 \text{ m}^2, \ I_{x-x} = 0.781 \times 10^3 \text{ m}^4, \ N = 420 \text{ kN}, \ P_0 = 0.25 \times 0.60 \times 140 = 210 \text{ ton} \), kapasite parametreleri \(AR = 2.5, \ P/P_0 = 42/210 = 0.2, \ A_g/A_c = 1.36 \) (1.2 olarak kabul edildi.), \(a/b = 2.4 \) (Tablo 2.9'daki değerlerden 2 olarak kabul edildi.). Örnek bina bilgilerinde donatı oranı bilinmediğinden \(\rho_1 = 1 \) olarak alınmıştır. \(P/P_0 = 42/210 = 0.2 \) dir. Tüm bu değerler bulunduktan sonra Şekil 2.6'daki kapasite çizelgelerinden seçilen kolonun ötelenme kapasitesi 1.01 sünklik kapasitesi 4.7 olarak bulunur. Şekil 4.1’de seçilen kolon için ötelenme ve sünklik kapasite değerleri gözünlmektedir.

Şekil 4.1 Seçilen kolon için ötelenme ve sünklik kapasite grafikleri [35]
<table>
<thead>
<tr>
<th>Seçilen bina tipi</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binadaki kat sayısı, s</td>
<td>4</td>
</tr>
<tr>
<td>En alt kattaki kolon sayısı, n</td>
<td>34</td>
</tr>
<tr>
<td>Zemin sınıfı</td>
<td>Z2</td>
</tr>
<tr>
<td>Deprem bölgesi</td>
<td>1</td>
</tr>
<tr>
<td>Ortalama kat ağırlığı=(330+3460)/(417.50*17.50)</td>
<td>1.4 ton/m²</td>
</tr>
<tr>
<td>I₁</td>
<td>0.021 m³</td>
</tr>
<tr>
<td>Tₓ</td>
<td>1.2 sn</td>
</tr>
<tr>
<td>Bina model numarası</td>
<td>47b2</td>
</tr>
<tr>
<td>C₁</td>
<td>14 10⁻³</td>
</tr>
<tr>
<td>C₂</td>
<td>4 10⁻³</td>
</tr>
<tr>
<td>Göreli kat ötelemeleri yüzdeleri</td>
<td></td>
</tr>
<tr>
<td>1. kat</td>
<td>0.73</td>
</tr>
<tr>
<td>2. kat</td>
<td>0.26</td>
</tr>
<tr>
<td>3. kat</td>
<td>0.38</td>
</tr>
<tr>
<td>4. kat</td>
<td>0.16</td>
</tr>
<tr>
<td>Modifiye edilmiş katlar arası ötelenme talebi</td>
<td>0.73</td>
</tr>
<tr>
<td>Büyüttülmüş katlar arası ötelenme talebi</td>
<td></td>
</tr>
<tr>
<td>1. kat</td>
<td>2.92</td>
</tr>
<tr>
<td>2. kat</td>
<td>1.04</td>
</tr>
<tr>
<td>3. kat</td>
<td>1.52</td>
</tr>
<tr>
<td>4. kat</td>
<td>0.64</td>
</tr>
<tr>
<td>AR</td>
<td>1.5/0.6 = 2.5</td>
</tr>
<tr>
<td>P₀ = a x b x C₁₄</td>
<td>210 ton</td>
</tr>
<tr>
<td>ρ₁</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>42 ton</td>
</tr>
<tr>
<td>P/P₀</td>
<td>0.2</td>
</tr>
<tr>
<td>Aₛ (0.25*0.6)</td>
<td>0.15</td>
</tr>
<tr>
<td>Ac (0.2*0.55)</td>
<td>0.11</td>
</tr>
<tr>
<td>Ag/Ac=1.36</td>
<td>1.20</td>
</tr>
<tr>
<td>a</td>
<td>0.6</td>
</tr>
<tr>
<td>b</td>
<td>0.25</td>
</tr>
<tr>
<td>a/b=2.4</td>
<td>2</td>
</tr>
</tbody>
</table>

Şekil 2 grafikten bulunan dr 1.01>0.73 kolonun ötelenme kapasite değeri talep değerinden büyütür.

4.2. Japon Sismik İndeks Yöntemi İle Örnek Binanın İncelenmesi

Japon Sismik İndeks Yöntemi ile Örnek bina incelendiğinde, \(E_s=0.80\) [6], Z bölge katsayısı örnekle 1. Derece deprem bölgesinde olduğuundan 1 alınmıştır [36].

\(G\) zemin koşulları değeri yöntemde 1.00 ile 1.10 arasında değişmektedir [6]. Zemin koşulları kötüleştikçe \(G\) değeri büyüdüğünden ve örnekle \(Z2\) sınıfında yer aldığından [36], doğrusal enterpolasyon yaparak \(G=1.025\) olarak alınmıştır.

\(U\) yapının kullanım katsayısı olup yöntemde konutlar için 1 alınmaktadır [6]. Buradan karşılaştırma indeksi Denklem (2.4)'ten \(I_0=0.82\) olarak bulunur (Denklem 2.4).

\(E_0\) hesaplanırken yapıda kısa kolon bulunmadığından Denklem (2.6) ile hesaplanmaktadır. Burada \(n\) örnek bina 4 katlı olduğundan ve zemin kat hesaba katılmadığından \(3.0\) olarak alınır. \(i\) ise incelenen kat zemin kat olduğundan \(1.0\) olarak alınmıştır. Örnek binada perde bulunmadığından \(C_w\) perdelerin taşma gücü sıfır olarak alınmıştır. \(C_w'\) nin sıfır olduğu durumda \(a_1\) \(1.0\) olarak alınır [6]. \(F_w\) perde sünekliğine bağlı katsayida \(1.0\) olarak kabul edilmiştir. Burada \(f_{cd}\) \(140\) kgf/cm\(^2\) [36], \(A_{c1}\) ve \(A_{c2}\) değerleri sırasıyla \(1603\) cm\(^2\) ve \(940\) cm\(^2\) dir. \(W\) göz önüne alınan kat zemin kat olduğundan \([2*4600]+3300\) üzerindeki bina ağırlığı \(12500\) kN hesaplanmaktadır. Tüm değerler Denklem (2.9)'da yerine konduğunda kolonların taşma gücü \(C_c=0.013\), \(E_0=0.013\) sonucuna ulaşılır. Örnek bina yaklaşık simetrik bir plana sahip olduğundan \(S_D\) katsayısı \(1\) olarak alınır [6]. Zamana bağlı etki katsayısı \(T=1\) kabul edilmiştir. Denklem (2.5)'e göre \(I_s=0.013\) olarak hesaplanmıştır.
Tablo 4.2. Japon Sismik İndeks Yöntemi Değerleri

<table>
<thead>
<tr>
<th>İşlemler</th>
<th>Değer</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_A</td>
<td>0.8</td>
</tr>
<tr>
<td>Z (1. derece deprem bölgesi)</td>
<td>1</td>
</tr>
<tr>
<td>G (Z_2)</td>
<td>1.025</td>
</tr>
<tr>
<td>U (Konut tipi)</td>
<td>1</td>
</tr>
<tr>
<td>I_S=$E_A Z G U$</td>
<td>0.82</td>
</tr>
<tr>
<td>n (Kat adedi)</td>
<td>4</td>
</tr>
<tr>
<td>i (Gözönüne alınan kat)</td>
<td>1</td>
</tr>
<tr>
<td>C_w (Perde taşıma gücü)</td>
<td>0</td>
</tr>
<tr>
<td>C_C (Kolon taşıma gücü)</td>
<td>0.013</td>
</tr>
<tr>
<td>A_{C1} (Elemen temiz yüksekliği/Kesit derinliği<6)</td>
<td>1603</td>
</tr>
<tr>
<td>A_{C2} (Elemen temiz yüksekliği/Kesit derinliği≥6)</td>
<td>940.00</td>
</tr>
<tr>
<td>f_{cd} (kg-f/cm2)</td>
<td>140</td>
</tr>
<tr>
<td>W</td>
<td>125×10^4</td>
</tr>
<tr>
<td>F_w (Perde süneklüğe bağlı kat sayısı)</td>
<td>1</td>
</tr>
<tr>
<td>A_1(Yer değiştirmeye uyum kat sayısı C_w=0 ise $A_1=1$)</td>
<td>1</td>
</tr>
<tr>
<td>E_0 (Kısa kolon yok)</td>
<td>0.013</td>
</tr>
<tr>
<td>S_0 (Yapının fiziksel özellik katsayısı, yaklaşık simetrik plan)</td>
<td>1</td>
</tr>
<tr>
<td>T (Zamana bağlı etki katsayısı)</td>
<td>1</td>
</tr>
<tr>
<td>I_S=$E_0 S_0 T$</td>
<td>0.013</td>
</tr>
<tr>
<td>I_S/I_0</td>
<td>0.016</td>
</tr>
</tbody>
</table>

$I_S < I_0$ deprem güvencesi belirsiz yapı.

$I_S/I_0 = 0.016 < 0.4$ ayrıntılı inceleme gerekşinimi.

Japon Sismik İndeks yöntemi ile 1999 Kocaeli depreminde orta hasar almış olan örnek bina incelendiğinde deprem güvencesinin belirsiz olduğu ve ayrıntılı incelemenin gerekli olduğu sonucu çıkmaktadır.
4.3. Kanada Sismik Tarama Yöntemi İle Örnek Binanın İncelenmesi

1 ile 5 arasında değişen depremsellik faktörü A 1.derece deprem bölgesinde bulunan örnek bina için 5 alınmıştır.

Çok zayıf gevşek zeminlerde 1.50 olmak üzere 1 ile 1.50 arasında değişen değerler alan B zemin faktörü, örnek binanın oturduğu zemin Z2 sınıfında yer aldığından ve olduğu için doğrusal enteredpolasyona ba lu yöntem için 1.25 olarak alınmıştır.

Döşeme sistem katsayı olan D değeri hesaplamalarda 1 olarak alınmıştır. D değeri 1 ile 2 arasında değişmektedir. Örnek bina kirişli diyafram özelliği gösteren bir döşeme yapısına sahiptir.

Yapısal düzünsizlik faktörü E değeri hesaplamalarda 1 olarak alınmıştır. Örnek bina 1999 Kocaeli depreminde yapısal hasara uğradığı için sadece bu düzünsizlik değerlerdirmeye alınmıştır.

Binada yaşayan kişi sayısı 48 olarak kabul edilmiştir. F=1.5 olarak hesaplamalara katılmıştır.

Denklem (2.1)’den SI=32.81 hesaplanmaktadır. NSI Denklem (2.2) ile hesaplandığında 7.5 olarak bulunmaktadır. Denklem (2.3)’den hesaplanan SPI değeri 40.31 olarak hesaplanmıştır.
Tablo 4.3. Kanada Sismik Tarama Yöntemi Değerleri

<table>
<thead>
<tr>
<th></th>
<th>Değer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Depremsellik faktörü) (1. derece deprem bölgesi)</td>
<td>5</td>
</tr>
<tr>
<td>B (Zemin Faktörü) (Z2)</td>
<td>1.25</td>
</tr>
<tr>
<td>C (Taşıyıcı sistem katsayısı) (Orta hasarlı gevrek yapı)</td>
<td>3.5</td>
</tr>
<tr>
<td>D (Döşeme sistem katsayısı) (Hafif diyafram)</td>
<td>1</td>
</tr>
<tr>
<td>E (Yapısal düzensizlik katsayısı) (Orta hasarlı yapı)</td>
<td>1</td>
</tr>
<tr>
<td>F (Binada yaşayanların katsayısı) (N=3 daire4 kat4 kişi=48)</td>
<td>1.5</td>
</tr>
<tr>
<td>G (Binanın bugünkü durumu) (Sorunlu)</td>
<td>4</td>
</tr>
<tr>
<td>H (Yapısal olmayan faktörler)</td>
<td>1</td>
</tr>
<tr>
<td>SI=ABCDE*F</td>
<td></td>
</tr>
<tr>
<td>NSI=BFG*H</td>
<td></td>
</tr>
<tr>
<td>SPI=SI+NSI</td>
<td></td>
</tr>
</tbody>
</table>

SPI>30 çok tehlikeli bina, 1999 Kocaeli depreminde orta hasar almış hali incelenmiştir.

4.4. P25 Yöntemi İle Örnek Binanın İncelenmesi

Bu tez çalışması kapsamında örnek binaya uygulanan P25 yönteminde kritik kat olarak zemin kat seçilmiştir. Buna göre efektif kat alanı \(A_e = 17.5 \times 17.5 = 360.25 \text{ m}^2 \) dir.

Örnek binada dolgu duvar ve perde bulunmadığından enkesit alanı endeksi hesaplanırken bu değerler hesaba katılmamaktadır. Kritik kattaki kolon enkesit alanları toplamı \(A_c = 2.25 \text{ m}^2 \) dir. \(A_{ef,x} \) ve \(A_{ef,y} \) perde ve dolgu duvar bulunmadığından birbirine \(A_c \) ye eşit olacaktır. Bu durumda \(C_{Ax} \) ve \(C_{Ay} \) birbirine eşittir. \(C_{Ax} = 1472 \) (Denklem 2.12), \(C_{Amaks}=C_{Amin} \), \(C_A=1477 \) (Denklem 2.15).

Bina taban alanı içine alan dikdörtgenin atalet momenti Denklem (2.18)’den \(I_x=I_y=17.5 \times 17.5^3/12=7815.75 \text{ m}^4 \) olarak bulunur. Zemin kat kolonların x yönüne göre atalet momentleri toplamı \(I_{cx}= 22.96 \text{ m}^4 \), y yönüne göre atalet momentleri toplamı \(I_{cy}=46.95 \text{ m}^4 \) tür [36]. Atalet momenti endeksi bileşkesi hesaplanırken perde ve dolgu duvar hesaba katılmamaktadır. Bu durumda \(I_{ef,x}=22.96 \text{ m}^4 \), \(I_{ef,y}=46.95 \text{ m}^4 \) olarak hesaplanmaktadır (Denklem 2.19). \(C_{ix}=62320.40 \) (Denklem 2.16) ve \(C_{iy}=71907.18 \) (Denklem 2.17) bulunur. Buna göre \(C_l=65056.38 \) olarak (Denklem 2.21) hesaplanmaktadır.
Denklem (2.23)’ten hesaplanan h_0 bina yüksekliği düzeltme çarpanı, her katı 3 m olan 4 katlı binada H=12 m olduğundan 375.4 olarak hesaplanmaktadır. Buna göre P_0 taşıyıcı sistem puanı Denklem (2.22)’den 177.78 olarak hesaplanır.

Örnek binada burulma düzensizliği, doşeme sürekliliği, düzey doğrultuda süreksizlik, kütle düzensizliği, korozyonun bulunması, ağır cephe elemanlarının varlığı, asma kat bulunması, katlarda seviye farkı bulunmamaktadır [36]. Buna göre $f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8$ katsayılarının her biri 1 olarak alınmıştır (Tablo 2.1).

Beton kalitesi C14 olduğundan f_9 Tablo 2.1’den 0.83 olarak hesaplanmıştır.

Kritik kattaki kolonların ortalama boyutu 25x50 cm (temsili kolon boyutları) ve en çok tekrar eden kiriş 20x60 cm [36] olduğundan Tablo 2.1’den $f_{10}=0.88$ olarak hesaplanmıştır.

Örnek binada etriye sıklığı 20 cm olarak kabul edilmiştir. Buna göre Tablo 2.1’den $f_{11}=0.84$ olarak bulunmaktadır.

Kaynak [36]’da belirtildiği gibi örnek bina Z2 sınıfı zemine oturduğu için Tablo 2.1’den $f_{12}=1.00$ olarak alınmaktadır.

Temel tipi sürekli temel olarak kabul edilmiştir. Buna göre $f_{13}=0.95$ olarak hesaba katılmıştır (Tablo 2.1).

Temel derinliğinin 1 m den az olduğu kabul edilerek $f_{14}=0.90$ olarak alınmıştır (Tablo 2.1). P₁ temel yapısal puanı Denklem 2.24’ten 2382.25 olarak hesaplanmıştır.

P₂ kısa kolon puanı yapıda kısa kolon bulunmadığından [36] sıfır olarak hesaplanmıştır.

Aₑf₁= Aₑlf₁= 2.25 ise $r_a=1$, Iₑf₁= Iₑlf₁= 46.95 ise $r_i=1$ örnek binada zayıf olan y yönünde inceleme yapıldığından değerleri hesaplanmıştır (Denklem 2.13, 2.26, 2.27). Buna göre yumuşak kat ve zayıf kat puanı P₃ Denklem 2.25’ten 100 olarak hesaplanmaktadır.

Örnek binanın 4 cephesinde de çıkma bulunmadığında [36] çıkmalar ve çerçeve süreksizliği puanı $P_4 = 50$ (Tablo 2.3) alınmaktadır.
Örnek bina bitişik nizam olmadığını [36] P₃ çarpışma puanı 0 olarak hesaba katılmaktadır.

Örnek binanın oturduğu zeminde sıvılaşma olmadığı kabul edilmiştir. Buna göre P₆ sıvılaşma potansiyeli puanı 100 olarak alınmaktadır [33].

Tablo 2.6'dan P₇ toprak hareketleri puanı Z₂ için 100 olarak hesaba katılmaktadır.

t=1 topografik katsayı [33], I=1 bina önem katsayısı [37], A₀=0.4 efektif ivme katsayısı [36], n=0.3 hareketli yük çarpanı [37] buna göre α=1 (Denklem 2.28)

_Pₘₐₙ=P₄=50, w=4 minimum P puanı ağırlık katsayısı 4 ile çarpılır, diğer Pᵢ puanları Tablo 2.7’de verilen ağırlık puanları ile çarpıldığında ağırlıklı ortalama puan P_w = 585.05 olarak Denklem (2.29) ile bulunur. Şekil 2.4 β katsayısının değişim grafiğinden β=1 olarak hesaplanır.

Denklem (2.30) yardımcı ile P sonuç puanı 50 olarak bulunmuştur.
<table>
<thead>
<tr>
<th>Kritik kat seçimi</th>
<th>Zeminin kat</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_k (Kritik kat kolon en kesit alanını toplamı)</td>
<td>2.25 m²</td>
</tr>
<tr>
<td>A_{sw} (Kritik kat betonarme perde duvar en kesit alan toplamı)</td>
<td>0</td>
</tr>
<tr>
<td>A_{sw} (Kritik kat dolgu duvar en kesit alan toplamı)</td>
<td>0</td>
</tr>
<tr>
<td>E_s/E_c (Dolgu duvar elastisite modülünün beton elastisite modülüne oranı)</td>
<td>0</td>
</tr>
<tr>
<td>A_{ey}</td>
<td>2.25</td>
</tr>
<tr>
<td>$A_c=ab$ (Efektif kat alanı=17.517.5)</td>
<td>306.25 m²</td>
</tr>
<tr>
<td>C_{Ay} (Alan endeksi)</td>
<td>1472</td>
</tr>
<tr>
<td>$C_{A_{max.}}$ (Dolgu duvar ve perde duvar olmadığı için x ve y yönünde)</td>
<td>1472</td>
</tr>
<tr>
<td>C_{A} (Alan endeksi bileşkesi)</td>
<td>1477</td>
</tr>
<tr>
<td>$I_{x}=I_{y}$ (Taban alanını içine alan dikdörtgenin x ve y yönündeki atalet)</td>
<td>7815.75 m⁴</td>
</tr>
<tr>
<td>I_{sx} (Kritik kat kolonlarının x yönüne göre atalet momentleri toplamı)</td>
<td>22.96 m³</td>
</tr>
<tr>
<td>I_{sy} (Kritik kat kolonlarının y yönüne göre atalet momentleri toplamı)</td>
<td>46.95 m³</td>
</tr>
<tr>
<td>$I_{sx}=I_{sy}$ (Betonarme Perde yok)</td>
<td>0</td>
</tr>
<tr>
<td>$I_{sx}=I_{sy}$ (Dolgu duvar yok)</td>
<td>0</td>
</tr>
<tr>
<td>$I_{ef, x}$</td>
<td>22.96</td>
</tr>
<tr>
<td>$I_{ef, y}$</td>
<td>46.95</td>
</tr>
<tr>
<td>C_{x}</td>
<td>62320.40</td>
</tr>
<tr>
<td>C_{y}</td>
<td>71907.18</td>
</tr>
<tr>
<td>C_{min}</td>
<td>62320.40</td>
</tr>
<tr>
<td>C_{max}</td>
<td>71907.18</td>
</tr>
<tr>
<td>C (Atalet momenti endeksi bileşkesi)</td>
<td>65056.38</td>
</tr>
<tr>
<td>H (Bina yüksekliği)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>h_0 (Bina yüksekliği düzeltme çarpanı)</td>
<td>375.40</td>
</tr>
<tr>
<td>P_0 (Taşıyıcı sistem puanı)</td>
<td>177.78</td>
</tr>
<tr>
<td>f_1 (Burulma düzensizliği yok)</td>
<td>1</td>
</tr>
<tr>
<td>f_2 (Dışene süreklişizliği yok)</td>
<td>1</td>
</tr>
<tr>
<td>f_3 (Düşey doğrultuda süreklişizlik yok)</td>
<td>1</td>
</tr>
<tr>
<td>f_4 (Kütle düzensizliği yok)</td>
<td>1</td>
</tr>
<tr>
<td>f_5 (Korozyon yok)</td>
<td>1</td>
</tr>
<tr>
<td>f_6 (Ağır cephe elementleri yok)</td>
<td>1</td>
</tr>
<tr>
<td>f_7 (Asma kat yok)</td>
<td>1</td>
</tr>
<tr>
<td>f_8 (Katlarda seviye farkı yok)</td>
<td>1</td>
</tr>
<tr>
<td>f_9 (Beton kalitesi C14)</td>
<td>0.83</td>
</tr>
<tr>
<td>f_{10} (Zayıf kolon-kuvvetli kiriş) (Temsil kolon 25/50, kiriş 20/60)</td>
<td>0.88</td>
</tr>
<tr>
<td>f_{11} (Etriye sıklığı) (20 cm kabul edildi)</td>
<td>0.84</td>
</tr>
<tr>
<td>f_{12} (Zemin Sınıfı Z2)</td>
<td>1</td>
</tr>
<tr>
<td>f_{13} (Temel tipi Sürekli temel)</td>
<td>0.95</td>
</tr>
<tr>
<td>f_{14} (Temel derinliği 1 m den az)</td>
<td>0.90</td>
</tr>
<tr>
<td>P_1 (Temel yapışal puanı)</td>
<td>2382.25</td>
</tr>
<tr>
<td>P_2 (Kısa kolon puanı)</td>
<td>0</td>
</tr>
<tr>
<td>P_3 (Yumuşak kat zayıf kat puanı)</td>
<td>100</td>
</tr>
<tr>
<td>P_4 (Çıkmalar ve çerçeve süreklişizliği puanı)</td>
<td>50</td>
</tr>
<tr>
<td>P_5 (Çarpışma puanı)</td>
<td>0</td>
</tr>
<tr>
<td>P_6 (Sıvılaşma potansiyeli puanı sıvılaşma yok)</td>
<td>100</td>
</tr>
<tr>
<td>P_7 (Toprak hareketleri puanı, YASS yokken Z2 için)</td>
<td>100</td>
</tr>
<tr>
<td>I (Bina önem katsayısı)</td>
<td>1</td>
</tr>
<tr>
<td>A_0 (Deprem bölgesine göre efektif ivme katsayısı 0.4)</td>
<td>0.4</td>
</tr>
<tr>
<td>n (Hareketli yük çarpanı DBYYHY)</td>
<td>0.3</td>
</tr>
<tr>
<td>t (tografik konum katsayısı)</td>
<td>1</td>
</tr>
<tr>
<td>α (düzeltme çarpanı)</td>
<td>1</td>
</tr>
<tr>
<td>$P_{\text{sonuç}}=P_4$</td>
<td>50</td>
</tr>
<tr>
<td>w (Ağırlık katsayısı)</td>
<td>4</td>
</tr>
<tr>
<td>Ağırık puanı $P_2=2382.25*4$</td>
<td>9531</td>
</tr>
<tr>
<td>Ağırık puanı $P_2=0*1$</td>
<td>0</td>
</tr>
<tr>
<td>Ağırık puanı $P_2=100*1$</td>
<td>300</td>
</tr>
<tr>
<td>Ağırık puanı $P_3=0*1$</td>
<td>0</td>
</tr>
<tr>
<td>Ağırık puanı $P_4=100*1$</td>
<td>300</td>
</tr>
<tr>
<td>Ağırık puanı $P_5=100*2$</td>
<td>200</td>
</tr>
<tr>
<td>$\Sigma(wP_i)$</td>
<td>10531</td>
</tr>
<tr>
<td>ΣP_i</td>
<td>18</td>
</tr>
<tr>
<td>P_w (Ağırık ortalamalı puan)</td>
<td>585.05</td>
</tr>
<tr>
<td>$P_{\text{sonuç}}=\alpha\beta u_{\text{sonuç}}$</td>
<td>50</td>
</tr>
</tbody>
</table>

22<50<78 $P_{\text{sonuç}}$ orta hasar bandında yeralmaktadır. Bu sonuç 1999 Kocaeli depreminde örnek binanın orta hasar aldığına doğruılmaktadır.
5. SONUÇLAR

Bu yöntem Türkiye’deki bina stoğunun deprem riski bakımdan sıralandımaya yönelik bir yöntem olarak düşünülebilir ve diğer yöntemlere göre bina stoğunun eritmek için ilk adım olarak kullanılabilir. Tablo 2.10’da görüldüğü gibi yöntem gözlemsel parametreler içermektedir.
Şekil 5.1 Göreli Katlar Arası Ötelenme Talebi

Kapasite-Talep Oranı Yöntemi ile örnek bina incelendiğinde göreli katlar arası ötelenme değerleri [36]'da yapılan doğrusal olmayan dinamik çözümleme sonuçlarına göre oluşan göreli yer değiştirme grafiği ile benzer krılmalar yaptığı görülmüştür.

Örnek binanın zemin katında kapasite talep oranı yöntemi ile incelenen kolonun 1.01 olarak bulunan ötelenme kapasite değeri, 0.73 olarak bulunan talep değerinden büyüktür. Ancak 2.92 olarak bulunan büyütülmuş göreli talep değerinden küçüktür. Bu durumda incelenen kolon göçme riski taşımaktadır. Kaynak [36]'da yapılan dinamik analiz sonucunda Şekil 3.4’te yapılan dinamik analiz sonucunda Şekil 3.4’te yapının zemin katındaki tüm kolonlarda mafsallaşma gözükmesi kapasite talep oranı yöntemi ile incelenen kolonun göçme riski taşıması ile örtüşmektedir.

İncelenen kolonun süneklik kapasitesi Şekil 2.6’dan 4.7 olarak hesaplanmıştır. Bu değer yapının dinamik analizleri sonucunda hesaplanan yapının yer değiştirme süneklik değerlerinden (μ₁ = 1.53 ve μ₂ = 2.00) [36] büyüktür.

Kapasite-Talep Oranı yönteminde tüm parametreler analitik olarak değerlendirilmiştir. Bu tez kapsamında yapılan çalışmalarında en kısa sürede en doğru sonuçları vermiştir.

Bu tez kapsamında Japon sismik indeks yöntemine göre performans indeksi ve karşılaştırma indeksi incelenmiş ve yapının deprem güvenliğinin belirizens olduğu sonucuna varılmıştır. Kaynak [36]'daki S_{BG} indeksleri ile sonuçları ortuşmektedir.

5. İleri çalışma önerisi olarak, Kanada Sismik Tarama Yöntemi Türkiye şartlarına göre düzenlenerek bina stoğunun deprem riski bakımından sıralandırmaya yönelik bir yöntem olarak kullanılabilir.

<table>
<thead>
<tr>
<th>Yöntemin Adı</th>
<th>Sonuç</th>
<th>Açıklama</th>
<th>Yöntemin Uygulama Süresi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanada Sismik Tarama Yöntemi</td>
<td>SPI>30</td>
<td>Çok Tehlikeli Bina</td>
<td>~ 30 dk</td>
</tr>
<tr>
<td>P25 Yöntemi</td>
<td>22<50<78</td>
<td>Orta Hasarlı Bina</td>
<td>~ 180 dk</td>
</tr>
<tr>
<td>Japon Sismik İndeks Yöntemi</td>
<td>$L < L_{50}$</td>
<td>Deprem Güvenliği Belirsiz</td>
<td>~ 120 dk</td>
</tr>
<tr>
<td>Kapasite-Talep Oranı Yöntemi</td>
<td>2.92>1.01</td>
<td>Binada Güçlendirme Öngörülür</td>
<td>~ 60 dk</td>
</tr>
</tbody>
</table>

Tablo 5.1 Örnek Bina İçin Sonuçlar Tablosu

62
KAYNAKLAR

