YÜZEY OTURMALARININ YAPILARIN DİNAMİK DAYANIMINA ETKİSİ

YÜKSEK LİSANS TEZİ
H.Selçuk GÜLBAY
709021032

Tezin Enstitüye Verildiği Tarih: 03 Ağustos 2011
Tezin Savunulduğu Tarih: 16 Ağustos 2011

Tez Danışmanı: Yrd. Doç. Dr. S. Ümit DİKMEN

AĞUSTOS 2011
ÖNSÖZ


Bu tezin hazırlanması aşamasında her adımda yardımcı olup yol gösteren değerli tez danışmanızın Sn. Yrd. Doç. Dr. S. Ümit DİKME’ne Teşekkür bir borç bilirim.

Ağustos 2011

Hüseyin Selçuk GÜLBAY
İnşaat Mühendisi
İÇİNDEKİLER

ÖNSÖZ .........................................................................................................................ı

İÇİNDEKİLER ............................................................................................................ıı

KISALTMALAR VE SEMBOL LİSTESİ ...........................................................................ııı

ŞEKİL LİSTESİ .................................................................................................................V

TABLO LİSTESİ ..............................................................................................................X

ÖZET ...............................................................................................................................Xıı

ABSTRACT ......................................................................................................................Xııı

1. GİRİŞ .......................................................................................................................1

1.1 İstanbul’da Ulaşım Amaçlı Tünel Çalışmaları .................................................2

1.2 İstanbul’un Zemin Koşulları ..............................................................................7

1.3 Türkiye’de Deprem Yönetmelikleri .................................................................8

1.4 İstanbul’un Depremseğini ..............................................................................12

1.5 Çalışmanın Amacı ..........................................................................................13

2. ÖNÇEKİ ÇALIŞMALAR .........................................................................................15

3. ÇALIŞMANIN YÖNTEMİ .....................................................................................21

3.1 Statik İtme Analizi .......................................................................................21

3.2 SAP2000 Yazılımı .......................................................................................24
4. TÜNEL KAZISI SONUCU YÜZEY OTURMALARININ ETKİLERİNİN İNCELENMESİ ............................................................................................................................ 26

4.1 Yüzey Oturmalarının Tahmini .................................................................................................................. 26

4.2 Zemin Yapı Etkileşimi ........................................................................................................................... 32

4.3 Yapısal Analiz Modelleri ........................................................................................................................ 33
    4.3.1 Modelin Oluşturulması .................................................................................................................... 33

4.4 Yapısal Yüklenme ..................................................................................................................................... 34
    4.4.1 Malzeme Sınıfı Ve Kesit Tanımlamaları ......................................................................................... 36
    4.4.2 Yüzey Oturmalarının Programa Tanımlanması .............................................................................. 38
    4.4.3 Zemin - Yapı Etkileşimi Çözüm ..................................................................................................... 40

5. ANALİZ VE SONUÇLARIN DEĞERLENDİRİLMESİ ........................................................................ 43

5.1 Dayanımın Tünel Aksı Üzerindeki Konumlara Değerlendirilmesi ......................................................... 45

5.2 Yapıların Kiriş Açıklığına Göre Kıyaslanması .................................................................................... 53

5.3 Yapıların Çökme Derinliğine Göre Kıyaslanması ............................................................................... 58

5.4 Yapılar Elastik Yay Tanımlanması Sonucu .......................................................................................... 65

6. SONUÇ ÖNERİLERİ .................................................................................................................................... 80

KAYNAKLAR ............................................................................................................................................... 82

ÖZGEÇMİŞ ................................................................................................................................................... 85
<table>
<thead>
<tr>
<th>KISALTMALAR VE SEMBOL LİSTESİ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABYYHY</td>
</tr>
<tr>
<td>FEMA</td>
</tr>
<tr>
<td>ATC</td>
</tr>
<tr>
<td>δ</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>su</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>r</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>δ AB</td>
</tr>
<tr>
<td>ω</td>
</tr>
<tr>
<td>lab</td>
</tr>
<tr>
<td>βAB</td>
</tr>
<tr>
<td>Vt</td>
</tr>
<tr>
<td>Smax</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>i</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>x</td>
</tr>
<tr>
<td>CL</td>
</tr>
<tr>
<td>Ac</td>
</tr>
<tr>
<td>Ao</td>
</tr>
</tbody>
</table>
ŞEKİL LİSTESİ

Şekil 1.1 İstanbul’da uygulaması devam eden bazı metro projeleri ............................................. 3
Şekil 2.1 Oturma Kavramlarının Gösterimi ................................................................................. 18
Şekil 2.2 Hasar dağılımları ........................................................................................................... 19
Şekil 2.3 Hasar dağılımları ........................................................................................................... 20
Şekil 3.1 Plastik mafsal şekil değiştirme özellikleri................................................................. 22
Şekil 3.2 Kapasite eğrisinin elde edilmesi .................................................................................... 23
Şekil 3.3 Sonlu elamanlar yöntemi ............................................................................................... 24
Şekil 4.1 Tünel kazısı nedeniyle oluşan oturma eğrisi .............................................................. 27
Şekil 4.2 Tünel kazısı nedeniyle oluşan oturma eğrisi.............................................................. 28
Şekil 4.3 Tünel kazısı üzerindeki 5.0 m açıklıklı yapı için çökme grafiği ................................ 29
Şekil 4.4 Tünel kazısı üzerindeki 6.0 m açıklıklı yapı için çökme grafiği ................................ 30
Şekil 4.5 Tünel kazısı üzerindeki 7.0 m açıklıklı yapı için çökme grafiği .............................. 31
Şekil 4.6 Temel Modeli Kabulleri ................................................................................................. 33
Şekil 4.7 Aks sisteminin SAP2000 programında oluşturulması ............................................... 34
Şekil 4.8 5.0 m açıklıktaki yapıya uygulanan ölü yük 3 boyutlu gösterim ................................. 35
Şekil 4.9 7.0 m açıklıktaki yapıya uygulanan hareketli yük ...................................................... 35
Şekil 4.10 Modelde kullanılan beton özellikleri ......................................................................... 36
Şekil 4.11 Modelde kullanılan kolon ve kiriş ebatları ............................................................... 37
Şekil 4.12 Kolonların eksenel yük moment etkileşim diyagramı ................................................ 37
Şekil 4.13 Yapının tünel üzerindeki konumu ........................................................................... 38
Şekil 4.14 Çökme miktarı yapıların tünel merkezinden uzaklıklarına göre programa veri olarak girilmesi .................................................................................................................. 39
Şekil 4.15 Statik itme analizi için modele uygulanan yükler ....................................................... 40
Şekil 4.16 FEMA - 356 yay katsayları eşitlikleri ....................................................................... 41
Şekil 4.17 Modelde uygulanan yay noktaları ............................................................... 42

Şekil 5.1 25 mm çökme derinliğinde 5.0 m açıklıklı yapının 0.0 - 5.0 – 10.0 -15.0 m konumları ................................................................. 45

Şekil 5.2 50 mm çökme derinliğinde 5.0 m açıklıklı yapının 0.0 - 5.0 – 10.0 -15.0 m konumları ................................................................. 46

Şekil 5.3 75 mm çökme derinliğinde 5.0 m açıklıklı yapının 0.0 - 5.0 – 10.0 -15.0 m konumları ................................................................. 46

Şekil 5.4 25 mm çökme derinliğinde 6.0 m açıklıklı yapının 0.0 -6.0 - 12.0 -18.0 m konumları ................................................................. 47

Şekil 5.5 50 mm çökme derinliğinde 6.0 m açıklıklı yapının 0.0-6.0-12.0-18.0 m konumları 48

Şekil 5.6 75 mm çökme derinliğinde 6.0 m açıklıklı yapının 0.0-6.0-12.0-18.0 m konumları 49

Şekil 5.7 25 mm çökme derinliğinde 7.0 m açıklıklı yapının 0.0 - 7.0 - 14.0 - 21.0 m konumları ................................................................. 50

Şekil 5.8 50 mm çökme derinliğinde 7.0 m açıklıklı yapının 0.0 - 7.0 - 14.0 - 21.0 m konumları ................................................................. 51

Şekil 5.9 75 mm çökme derinliğinde 7.0 m açıklıklı yapının 0-7-14-21 m konumları ............... 51

Şekil 5.10 Yapının çukur üzerindeki konumuna göre deprem dayanım kapasitesindeki azalma .............................................................................. 53

Şekil 5.11 Tünel merkezinde 25mm çökme derinliğinde 5.0, 6.0 ve 7.0 m açıklıklı yapı ...... 53

Şekil 5.12 Tünel merkezinde 50mm çökme derinliğinde 5.0, 6.0 ve 7.0 m açıklıklı yapı ...... 54

Şekil 5.13 Tünel merkezinde 75 mm çökme derinliğinde 5.0 , 6.0 ve 7.0m açıklıklı yapı ...... 54

Şekil 5.14 0.0 m merkezde 25-50-75 mm çökme derinliğinde 5.0 m açıklıklı yapının konumları ...................................................................................... 55

Şekil 5.15 5.0 m kaydırılmış 25, 50 ve 75 mm çökme derinliğinde 5.0 m açıklıklı yapının konumları ...................................................................................... 56

Şekil 5.16 25mm çökme derinliğinde 5.0 , 6.0 ve 7.0 m açıklıklı yapının çukur üzerindeki konumuna göre deprem dayanımındaki azalma .................................................. 56

Şekil 5.17 50mm çökme derinliğinde 5.0 , 6.0 ve 7.0m açıklıklı yapının çukur üzerindeki konumuna göre deprem dayanımındaki azalma .................................................. 57

Şekil 5.18 75mm çökme derinliğinde 5.0, 6.0 ve 7.0 m açıklıklı yapının çukur üzerindeki konumuna göre deprem dayanımındaki azalma .................................................. 57
Konuyu diğer bir parametremiz olan çökme derinliğine göre kıyasladığımızda ise 5.0 m açıklıklı yapı için 1. ve 2. konumda üç çökme derinliği için aynı değerleri elde ediyoruz. (Şekil 5.19)

Şekil 5.20 15.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 5.0 m açıklıklı yapının konumları

Şekil 5.21 0.0m merkezde 25-50-75 mm çökme derinliğinde 6.0 m açıklıklı yapının konumları

Şekil 5.22 6.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 6.0 m açıklıklı yapının konumları

Şekil 5.23 12.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 6.0 m açıklıklı yapının konumları

Şekil 5.24 18.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 6.0 m açıklıklı yapının konumları

Şekil 5.25 0.0 m merkezde 25-50-75 mm çökme derinliğinde 7.0 m açıklıklı yapının konumları

Şekil 5.26 7.0m kaydırılmış 25-50-75 mm çökme derinliğinde 7.0 m açıklıklı yapının konumları

Şekil 5.27 14.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 7.0 m açıklıklı yapının konumları

Şekil 5.28 21.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 7m açıklıklı yapının konumları

Şekil 5.29 25mm 50mm ve 75 mm çökme derinliğinde 5.0 m açıklıklı yapının çukur üzerindeki konumuna göre deprem dayanımındaki azalma

Şekil 5.30 25mm 50mm ve 75 mm çökme derinliğinde 6.0 m açıklıklı yapının çukur üzerindeki konumuna göre deprem dayanımındaki azalma

Şekil 5.31 25mm 50mm ve 75 mm çökme derinliğinde 7.0 m açıklıklı yapının çukur üzerindeki konumuna göre deprem dayanımındaki azalma

Şekil 5.32 0.0 m merkezde 25-50-75 mm çökme derinliğinde 5.0 m açıklıklı yapının konumları

Şekil 5.33 5.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 5.0 m açıklıklı yapının konumları

Şekil 5.34 10.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 5.0 m açıklıklı yapının konumları
Şekil 5.35 15.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 5.0 m açıklıklı yapının konumları ................................................................. 67

Şekil 5.36 0.0 m merkezde 25-50-75 mm çökme derinliğinde 6.0 m açıklıklı yapının konumları ................................................................. 68

Şekil 5.37 6.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 6.0 m açıklıklı yapının konumları ................................................................. 68

Şekil 5.38 12.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 6.0 m açıklıklı yapının konumları ................................................................. 69

Şekil 5.39 18.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 6.0 m açıklıklı yapının konumları ................................................................. 69

Şekil 5.40 0.0 m merkezde 25-50-75 mm çökme derinliğinde 7.0 m açıklıklı yapının konumları ........................................................................ 70

Şekil 5.41 7.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 7.0 m açıklıklı yapının konumları ........................................................................ 70

Şekil 5.42 14.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 7.0 m açıklıklı yapının konumları ........................................................................ 71

Şekil 5.43 21.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 7.0 m açıklıklı yapının konumları ........................................................................ 71

Şekil 5.44 25 mm çökme derinliğinde 5.0 m açıklıklı yapının 0.0-5.0-10.0-15.0 m konumları ................................................................. 72

Şekil 5.45 50 mm çökme derinliğinde 5.0 m açıklıklı yapının 0.0-5.0-10.0-15.0 m konumları ................................................................. 72

Şekil 5.46 75 mm çökme derinliğinde 5.0 m açıklıklı yapının 0.0-5.0-10.0-15.0 m konumları ................................................................. 73

Şekil 5.47 25 mm çökme derinliğinde 6.0 m açıklıklı yapının 0.0-6.0-12.0-18.0 m konumları ................................................................. 73

Şekil 5.48 50 mm çökme derinliğinde 6.0 m açıklıklı yapının 0.0-6.0-12.0-18.0 m konumları ................................................................. 74

Şekil 5.49 75 mm çökme derinliğinde 6.0 m açıklıklı yapının 0.0-6.0-12.0-18.0 m konumları ................................................................. 74

Şekil 5.50 25 mm çökme derinliğinde 7.0 m açıklıklı yapının 0.0-7.0-14.0-21.0 m konumları ................................................................. 75

Şekil 5.51 50 mm çökme derinliğinde 7.0 m açıklıklı yapının 0.0-7.0-14.0-21.0 m konumları ................................................................. 75
Şekil 5.52 75 mm çökme derinliğinde 7.0 m açıklıklı yapının 0.0-7.0-14.0-21.0 m konumları

Şekil 5.53 25, 50 ve 75 mm çökme derinliğinde 5.0 m açıklıklı yapının çukur üzerindeki konumuna ve yay durumuna göre deprem dayanımındaki azalma

Şekil 5.54 25, 50 ve 75 mm çökme derinliğinde 6.0 m açıklıklı yapının çukur üzerindeki konumuna ve yay durumuna göre deprem dayanımındaki azalma

Şekil 5.55 25, 50 ve 75 mm çökme derinliğinde 7.0 m açıklıklı yapının çukur üzerindeki konumuna ve yay durumuna göre deprem dayanımındaki azalma

Şekil 5.56 25 mm çökme derinliğinde 5m 6m ve 7m açıklıklı yapının çukur üzerindeki konumuna ve yay durumuna göre deprem dayanımındaki azalma

Şekil 5.57 50mm çökme derinliğinde 5m 6m ve 7m açıklıklı yapının çukur üzerindeki konumuna ve yay durumuna göre deprem dayanımındaki azalma

Şekil 5.58 75mm çökme derinliğinde 5m 6m ve 7m açıklıklı yapının çukur üzerindeki konumuna ve yay durumuna göre deprem dayanımındaki azalma
# TABLO LİSTESİ

<table>
<thead>
<tr>
<th>Tablo</th>
<th>Aşınma Ünitesi</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tablo 1.1 Deprem Katsayısı (C)</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Tablo 1.2 n katsayısı (Hareketli yük ile ilgili)</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Tablo 4.1 Tünel kazısı üzerindeki 5.0 m açıklıklı yapı için çökme değerleri</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>Tablo 4.2 Tünel kazısı üzerindeki 6.0 m açıklıklı yapı için çökme değerleri</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Tablo 4.3 Tünel kazısı üzerindeki 7.0 m açıklıklı yapı için çökme değerleri</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>Tablo 5.1 grafiklerde kullanılan kodlamalar</td>
<td></td>
<td>44</td>
</tr>
</tbody>
</table>
ÖZET

Hızla artan kentleşme nedeniyle, başta metro ve karayolu tünelleri gibi ulaştırma ile ilgili yapılar olmak üzere bazı kentsel fonksiyonların daha iyi gerçekleştirilmesi için yeraltının kullanılması zorunlu hale gelmektedir. Önemli ölçüde yaygınlaşan metro ve kara yolu tünel inşaatları, genellikle meskûn alanların altında geçmektedir. Bu meskûn alanlarda bulunan yapıların büyük bir bölümü ise orta yükseklikteki betonarme çerçeve sistemi, 4 - 5 katlı ve tekil temelli yapılarıdır. Bu yapılar 22 yıl gibi uzun bir süre yürürlüğe kalan, 1975 Afet Yönetmeliği (ABYYHY-1975) esas alınarak tasarlanmıştır. Yüksek deprem riski taşıyan şehirlerde uygulanan tünel çalışmaları sırasında oluşan arazi topografyasındaki değişiklikler, yüzey çökümleri ve yüzey şekil değiştirme hareketlerinin parametrelerinin önceden kestirimi, bu tür yapıların emniyeti açısından daha da önem taşımaktadır. Bu çalışmada; tünel çalışmaları nedeniyle oluşan yüzey şekil değiştirme parametrelerinin kestirimi için deneysel, yarı teorik bağıntılar kullanılarak 25, 50 ve 75mm olmak üzere 3 farklı çökme derinliğine ait parametreler elde edilmiş ve ülkemizdeki mevcut yapı stokunun büyük bir bölümü temsil edecek 3 farklı yapı modeli oluşturulmuştur. Olusan 72 farklı sistemde statik itme analizi çözümlemesi yapılarak; yüzey oturmalarının bu binaların deprem dayanımına etkileri irdelenmiştir.

Analizler 4 farklı parametreye göre değerlendirilmiştir. Birinci parametre yapıların tünel merkezine göre konumları, ikinci parametre tünelere meydana gelen maksimum çökme derinliği, üçüncü parametre yapıların kiriş açıklıkları, dördüncü parametre ise yapı zemin etkileşiminde kullanılan yaylar olarak belirlenmiştir. Buna göre görülmüştür ki 25mm ve 50mm çökme derinliğinde yapıın açıklığı deprem dayanımı çok fazla etkilememekte, fakat 75mm çökme derinliğinde görülümemektedir ki; açıklık arttıkça dayanım artmaktadır, yani açıklığı en az olan yapıların dayanımı en azdır. 3. konumda 5.0m açıklıklı yapıın deprem dayanım kapasitesi % 20 azalırken 6.0m açıklıklı yapıın %15, 7.0m açıklıklı yapıın ise %10 azalmıştır. Ayrıca 25mm ve 50mm de kiriş açıklığının önemli bir etkisi yoktur. Fakat 75mm çökme derinliğinde kiriş açıkliğinin her 1m artmasıyla dayanım %5 artmaktadır. Yani yapının çukur üzerinde geniş bir alana oturması yapındaki oturma çarptıklığını azaltmaktadır.
ABSTRACT

Due to the rapidly increasing urbanization, particularly related to transportation such as subway and highway tunnels, including buildings to be used in some urban functions are becoming better for the realization underground Significant widespread underground road tunnel constructions often go under the residential areas. The large part of the buildings in residential areas, are mid-rise reinforced concrete frame system, 4 - 5-storey and single-foundation structures. These buildings are designed with Disaster Regulation in 1975 which remain 22 years such as long period of time. It’s important that during the tunnel work in cities the estimation of motion parameters such as high seismic risk, changes in land topography, the surface collapses and the surface deformation in advance for the safety. In this study, the surface deformation caused by the tunneling parameters for the empirical estimation using semi-theoretical equations derived from 3 different parameters for the depth of collapse in our country and will represent a large portion of the housing stock in 3 different building model was designed. Static pushover analysis, analysis of the system consisting of 72 different settlements, the effects of the earthquake resistance of buildings examined.

Analyses were evaluated according to 4 different parameter. First parameter is the location of the building according to the center of the in the tunnels, the second parameter is the maximum collapse depth, the third parameter beam span and the fourth parameter is determined as the springs used in the interaction of soil structure. According to this, the structure has been seen that in the 25mm and 50mm collapse depth the span of the structure doesn’t effect the resistance but in the 75mm collapse depth the increase of the spam increases the resistance that means the less span is the less resistance. In third positon which is the 5m span structure decrease 20% in capacity building and 6m and 7m span structure, 15% and 10% respectively. In addition, the beam opening has no significant effect.in 25mm and 50mm collapse depth although every 1m opening of the beam increasing by 5% strength in 75mm collapse depth. In other words, the building sits over a large area on the pit reduces distortion of the structure.
1. GİRİŞ


Ne var ki, çoğu zaman mazisi uzun yıllara dayanan şehirlerde, şehir merkezi ve merkez çevresinde yapılaşma tamamlanmış, şehrin karakterini oluşturan simgesel yapılar ve cadde, sokak düzeni olmuştur. Hatta geçmişi otomobil öncesine dayanan şehirlerde varsı birkaç an geniş arterin dışında yan yollar ve sokaklar çoğu kez oldukça dar olmuştur. Bu nedenle her geçen gün artan şehir merkezini ziyaret talebi karayolu araçları ile makul performans ölçütlerinde sağlanamaz duruma gelmiştir.
Benzer nedenlerle, ülkemizin büyüme ve gelişme sürecine bağlı olarak; İstanbul, Ankara, İzmir gibi büyük şehirlerde her geçen gün artan araç sayısı ve buna bağlı olarak mevcut yolların yetersiz kalması sebebiyle kent içi ulaşımı büyük sorun haline gelmiştir. Gün geçtikçe artan ulaşım talebinin karşılanması ve bilhassa şehir merkezlerinin şehrin dışında oluşan yeni yerleşim alanları ile bağlantısının sağlanması amacıyla inşa edilen metro ve karayolu tüneleri günümüz için iyi bir ulaşım alternatifi oluşturmaktaadır. Bu amaçla tüm bu 3 büyük şehrimizde yoğun bir şekilde hem metro hem de yol ve tünel inşaatları yapılmaktadır. Mevcut durumda da bu 3 şehrin arasında en yoğun faaliyet İstanbul’dadır. 

1.1 İstanbul’daki Ulaşım Amaçlı Tünel Çalışmaları

Raylı taşıma sistemlerinin; hızlı, ekonomik, güvenli, çevre dostu ve çağdaş sistemler olması, dünyadaki tüm metropollerde olduğu gibi İstanbul kent içi ulaşım sorununun çözümü içinde kaçınılmaz hale gelmiştir. İstanbul Büyükşehir Belediyesi, bu amaçla 1985 yılında İstanbul’da raylı taşıma sistemlerini yeniden yaygınlaştırma için hazırlanan projelerin inşaatlarını başlamıştır. O tarihten günümüze dek ciddi miktarda proje gerçekleşmiş ve halen de inşaatı devam eden veya tasarım halinde olan çok sayıda proje vardır.

3

Şekil 1.1 İstanbul’da uygulaması devam eden bazı metro projeleri [2]

Şekil 1.2. Marmaray Projesi ile ilgili temel veriler [2]

![Şekil 1.3. Taksim – Kabataş Funiküller Projesi][2]

Ayrıca İstanbul’da lastik tekerlekli taşıtlar içinde çok sayıda tünel yapılması planlanmıştır. Bu tünelerin bir kısmı, inşaatları tamamlanarak işletme alınmış, bir kısmı da inşa halindedir. Planlanan tünelerin uzunluğu toplam 142 km’nin üzerindedir. Bu projelerden Kâğıthane - Piyalepaşa (1506 m) ve Bomonti - Dolmabahçe (2340 m) tüneleri işletme alınmıştır. Sarıyer -Çayırbaşı (4100 m) tünelinde çalışmalar devam etmektedir.
İstanbul’da yapımına başlanmak üzere olan diğer bir iddialı projede Avrasya karayolu tüneli projesidir. Bu projede aynen Marmaray’da olduğu gibi şehrin doğu ve batı yakalarını birleştirmek amaçlıdır. İki proje arasındaki temel fark birinin münhasıran raylı taşımacılığa diğerinin ise münhasıran karayolu taşımacılığına ayrılmış olmasıdır. Diğer bir önemli noktada Avrasya tünelinin Marmaray’dan farklı olarak tamamen delgi yönetimyle yapılacak olmasıdır. Proje ile ilgili temel veriler Şekil 1.4’te verilmiştir.

Şekil 1.4. Avrasya Karayolu Tüneli Fikir Projesi [2]

Raylı sistemlerin ve karayolu tünelinin yanısıra İstanbul’da başarılı bir denizaltı projesi ayağıyla tamamlanan Melen Çayı projesi de önemli tüneler arasında yer almaktadır. (Şekil 1.5)

Ülkemizde, kent içi ulaşımında kullanılan tünel çalışmalarının çoğunlukla meskun alanların altından geçtiği olması bu sorunun ülkemiz açısından öneminin daha

1.2 İstanbul’un Zemin Koşulları

İstanbul’un hızla büyüyen bir metropol olmasının meydana getirdiği yapılma sürecinin bir sonucu olarak kent sınırlarının oldukça genişlemesi, kentin üzerine oturduğu zemin tiplerini çeşitli kılmaktadır. Tez’in bu alt bölümünde İstanbul’un zemin yapısı, O. Tüysüz tarafından yayımlanmış çalışmadan doğrudan alıntı yapılarak özet şeklinde aktarılacaktır.


İstanbul taş yapısı kuvarsit, arkoz, grovak, şeyl ve kireçtaşlarından oluşmaktadır. Bu birimlerin orjinal niteliklerinin korunduğu alanlarda yerleşim açısından son derece sağlam bir kaya ortamı mevcuttur. Ancak bu birimlerin zaman içinde kırık, çatlamak ve makaslama ile atmosferik koşullar altında uğradıkları değişiklikler orijinal kaya davranışı bozulmasına neden olmuşturlar. Özellikle zemin davranışı açısından önemli olan üst 30.0 m’lik tabaka içerisinde görülen ayrışma, fiziksel ve kimyasal değişiklik İstanbul’da mühendislik yapılarının inşasında karşılaşılan büyük problemlere yol açmaktadır. Örneğin Kurtköy formasyonunun arkozları orijinalde
sert - çok sert kaya niteliği taşımalarına rağmen yer yer oluşan fiziksel ve kimyasal değişiklik sonucu tamamen kuma dönümsüş olarak izlenmektedir. Ayrıca, Avrupa yakasında yaygın olarak görülen ve İstanbul’un tünel, metro, köprü gibi önemli mühendislik yapıları için detaylı olarak incelenmiş olan Karbonifer yaşlı grovaklar (Trakya formasyonu) yer yer aşırı çatlaklı yapısının yanı sıra killeşme, ayrışma gibi ikincil etkilerle de kaya niteliğini yitirmiş olarak bulunabilmektedir.

Bu birimler içerisinde zemin davranışı etkiyeçek başlıca ikincil etkilerin başında yeraltı suyu gelmektedir. Örneğin yer yer gevşek kumlardan oluşan Çukurçeşme formasyonunda sığ yeraltı suyu varsa zemin taşıma gücü son derece azalmaktadır.


1.3 Türkiye’de Deprem Yönetmeliikleri

Ülkemizin büyük bir bölümünün deprem bölgesinde yer alması ve yakın tarihimize de görüldüğü gibi depremlerin çok büyük can ve mal kayıplarına sebep olması, gelişmiş inşa edilen yapıların denetimsizliği ve uygulamadaki eksiklikleri ortaya koymaktadır. Bu sorunların önüne geçmek için birçok deprem yönetmeliğini yayınlanmıştır. Ülkemizde 9 adet deprem yönetmeliği yürürlüğe girmiştir.
1940 - Zelzele Mıntıkalarında Yapılacak İnşaat ait İtalyan Yapı Talimatnamesi
1944 - Zelzele Mıntıkaları Muvakkat Yapı Talimatnamesi
1949 - Türkiye Yersarsıntısı Bölgeleri Yapı Yönetmeliği
1953 - Yersarsıntısı Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik
1962 - Afet Bölçelere Yapılacak Yapılar Hakkında Yönetmelik (ABYYHY)
1968 - Afet Bölçelere Yapılacak Yapılar Hakkında Yönetmelik (ABYYHY)
1975 - Afet Bölçelere Yapılacak Yapılar Hakkında Yönetmelik (ABYYHY)
1997 - Afet Bölçelere Yapılacak Yapılar Hakkında Yönetmelik (ABYYHY)
2007 - Deprem Bölçelere Yapılacak Yapılar Hakkında Yönetmelik (DBYYHY)

Hemen hemen tümü Afet Yönetmeliği başlığıyla çıkan bu yönetmeliklerde hep deprem konusu daima hakim olmuş ve sel ve yangın gibi diğer afet konularına yer verilmemiştir. [6]

İlk deprem hesabı çok basitte olsa 1949 Deprem Yönetmeliğinde mevcuttur. Daha sonraki yönetmeliklerde deprem hesapları gittikçe ayrıntı kazanmıştır. 1953 Deprem Yönetmeliğinde deprem kuvvetlerinin hesabı daha ayrıntılı verilmiş ve tablolar oluşturulmuştur.

Tablo 1.1 Deprem Katsayısı (C)

<table>
<thead>
<tr>
<th>SARTLAR</th>
<th>1.° Deprem Bölgesi</th>
<th>2.° Deprem Bölgesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Yerlilaya kalmalı lm.den fazla olan zeminler üzerine yapılacak yaplar için</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>b) Asgari kalmalı 3 m olan sert kil zeminler üzerine yapılacak yaplar için</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>c) Diğer iki şekilde zeminlerin dışında kalan zeminlerin üzerine yapılacak yaplar için</td>
<td>0.04</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Tablo 1.2 n katsayısı (Hareketli yük ile ilgili)

<table>
<thead>
<tr>
<th>YAPI TURU</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinema, tiyatro, otel, kahvelane, fabrika, turunun toplanır ve işyeri olarak kullanlacak yapılarla</td>
<td>1</td>
</tr>
<tr>
<td>Resmi yapılarla</td>
<td>1/2</td>
</tr>
<tr>
<td>Meskenlerde</td>
<td>1/3</td>
</tr>
</tbody>
</table>


Şekil 1.6 1975 Deprem Yönetmeliği Kolon, boyuna ve enine donatılar [7]

1997 Deprem Yönetmeliği gelişen bilgi ve teknolojinin kullanıldığı, yapı tasarmında deprem hesabı ile ilgili gerekli birçok denklem ve tablonun bulunduğu, 1998 yılında yapılan değişikliklerle de yönetmelik, önemli miktarda, depreme dayanıklı yapı tasarımını için eksiksiz duruma getirilmiştir. Hatta diğer gelişmiş
ülkelerdeki standart ve yönetmelikler dikkate alındığında oldukça emniyetli bir tasarım yaklaşımdı içindedir.


1.4 İstanbul’un Depremşelliği

İstanbul ili dünyanın en önemli deprem kuşaklarından biri üzerinde durmaktadır. Bu bağlamda Bayındırlık ve İskan Bakanlığı Afet İşleri Genel Müdürlüğüne yayınlanan deprem bölgeleri haritasına göre İstanbul’daki yerleşim alanlarının büyük kısmı 1. ve 2. deprem bölgesindeydi. (Şekil 1.7)

![Şekil 1.7. İstanbul İl’i deprem bölgeleri (Afet İşleri Genel Müdürlüğü, 1996)](image-url)


1.5 Çalışmanın Amacı

Hızla artan kentleşme nedeniyle, önemli ölçüde yaygınlaşan metro ve kara yolu tünel inşaatları, genellikle meskun alanların altında geçmektedir. Bu meskun alanlarda bulunan yapıların büyük bir bölümü ise orta yükseklikteki betonarme çerçeve sistemli, 4 - 5 katlı ve tekil temelli yapılar. Bu yapılara 22 yıl gibi uzun bir süre yürütülük kalan 1975 Afet Yönetmeliği (ABYYHY-1975) esas alınarak tasarlanmıştır. Yüksek deprem riski taşıyan şehirlerde uygulanan tünel çalışmalarında oluşan, ara topografyasındaki değişiklikler, yüzey çekmeleri ve yüzey
şekil değiştirme hareketlerinin parametrelerinin önceden kestirimi, bu tür yapıların emniyeti açısından daha da önem taşımaktadır.

Bu çalışmada; ülkemizdeki mevcut yapı stokunun büyük bir bölümünü temsil edecek 3 farklı yapı modeli oluşturulmuştur. Bu yapı modellerine, tünel kazılarından dolayı ortaya çıkan 3 farklı çökme derinliğine ait parametreler yansıtılmıştır. Uygulanan 72 farklı sistemde statik itme analizi çözümlemesi yapılarak yüzey oturmalarının, bu binaların deprem dayanımına etkileri irdelenmiştir.
2. ÖNCEKİ ÇALIŞMALAR

Tünel inşaatları nedeniyle oluşan zemin düzeyi oturlamalarının yapıların dayanım üzerindeki etkisi üzerine literatürde farklı araştırmacılar tarafından yapılmış çok değerli çalışmalar vardır. Bu çalışmalarında ağırlıklı olarak yıguna yapılar ve kısmen de betonarme çerçeve yapılar ele alınmıştır. Yapılan çalışmalar diğer bir ortak özelliği de sadece oturlamaların statik durumda yapıların dayanımına etkisinin incelenmesidir.

Yapılan ilk çalışmalarda yapı davranışının, saha araştırmaları ışığında iddelenen analitik yöntemlerle açıklanması incelenmiştir, (Skempton ve McDonald 1957; Bjerrum 1963; Meyerhof 1953 ve 1956; Polshin ve Tokar 1957; Burland ve Worth 1974; ve Wahls 1981) yapının kendi ağırlığı altındaki oturma sınırları ile ilgili öneriler geliştirilmiştir. Bu çalışmalarında hasarlar ve yapının yanıtı açısal şekillendirme ya da yapıdaki dönme derecesiyle ilişkilendirilmiştir.

Daha sonraki yapılan çalışmalar ise yapının zemin yer değiştirmeye hareketine olan tepkisi; madencilik, tünel açılması ve açık kazılar sonucunda civar yapılarında ortaya çıkan değişimler incelenmiştir. (Brauner 1973; Ulusal Kömür İdaresi 1975; Littlejohn 1974; Geddes 1977; Breth ve Chambosse 1974; Atewell 1977 a, b; O'Rourke 1976; Boscardin 1978, 1980; Mahar ve Marino 1981) Bunun nedeni; araştırmaların yapıldığı ülkelerdeki tünel çalışmalarının civarında daha çok bu tip yapıların mevcut olması ve özellikle yıguna yapılar gibi gevrek davranış gösteren yapıların hasar durumlarının gözle kolay ölçülebilir olmasıdır.

Önceki bölümde sunulan bilgiler ışığında ülkemiz yapı stokunun büyük bir bölümü oluşturan orta yükseklikteki betonarme çerçeve binaların altında geçen ve ülkemizdeki büyüme ve gelişme sürecine bağlı olarak gün geçtikçe ihtiyaç haline gelen ve yaygın bir şekilde yapılan tünel kazılarından dolayı meydana gelen yüzey
oturmaları sonucu; yapların taşıyıcı elemanlarında tasarım sırasında öngörülmeyen farklı gerilmeleri doğrusal olmayan davranışların dikkate alınmasıyla performans değerlendirilmesinin yapılması çalışılması gereken bir konudur.

Tünel ve altyapı inşaatları sırasında oturmaları belirlemekte, çeşitli hesap yöntemlerinin yanı sıra, genellikle kullanılan yöntem “Sonlu Elemanlar Yöntemi”dir. Bu yöntem, her ne kadar karmaşık zemin durumunu modellemek için vazgeçilmez bir yöntem olsa da tam tanımlanmamış mekanik ve fiziksel parametreleri içermesi açısından kolaylıkla uygulanamamaktadır. [10]

Birçok araştırmacı zeminde üç boyutlu modeli tasarlamak için sınırlı imkânlara sahip olduğundan, iki boyutlu basit gerilme durumunu modelleyerek çalışmalarını gerçekleştirmiştir. Bu, iki boyutlu düzlemdede tanımlanan gerilme durumu, doğrultu boyunca dilimlere bölünmüş, sonlu elemanlar düzlemlerinin entegrasyonuyla üç boyutlu olarak ifade edilebilmştir.


Mair ve Taylor (1993) tarafından geliştirilmiş, zemin plastisitesini içeren bir yöntemde de lineer elasto-plastik ortamda silindirik ve küresel oyukların kapalı form çözümleriyle, Londra Kildinde tünel açılmasından dolayı oluşan yüzey altı hareketlerinin kriyaslanmasıdır. Bu yöntemdeki kapalı form çözümleri aşağıdaki gibidir;
Bu bağıntılarda “δ”, tünel merkeziyle r açı yapan noktadaki açısal yer değiştirme, “Su”, suya doygun zeminin kayma mukavemetidir. Stabilite oranı “N*=σv/Su” olup, σv, tünel merkezinde kazı başlamadan önceki fazla yük değeridir. Yukarıdaki ifadelerde eksenel yer değiştirmelerin ifadesi (küresel oyuklar) \((D/r)^2\) içeren denklem ile bu esnada gerçekleştirilen açısal yer değiştirme ifadesi de (silindirik oyuklar) \((D/r)\) ifadesi içeren denklemler kullanılmıştır. Mair ve Taylor analizlerini devam ettirmişler, oyuk açılması sırasında boşalan kısmi yükü de ele alarak geçici tünel kaplaması durumu için (2.2) bağıntısını;

\[
\frac{\delta}{D} = \frac{s_U}{2G} \left( \frac{D}{r} \right) e^{(N^* - 1)}
\]

olsunun, bitişik kazılarla zemin durumunun bozulmasını, yeraltı su akımlarıyla erozyon oluşmasını, temel elamanlarının tahribata uğramasını, don olmasının, ısınma-kuruma olması, killi zeminlerde çabuk büyüyen ağaçların bulunmasını ve kimyasal olaylardan bir ya da bir kaçının bulunmasına bağlıdır. Hasar oluşturacak farklı oturmalara, zemin sıkışma özellikleri veya tabaka kalınlıklarının değişmesini, zeminde yer yer sert-yumuşak bölgelerin bulunmasını ve temel boyut ve derinliklerinin farklı olması sebep göstermektedir. Oluşması muhtemel hasarları ise mimari, fonksiyonel ve yapısal olarak sınıflandırmaktadır.


Şekil 2.1 Oturma Kavramlarının Gösterimi (Wahls, 198)

Ayrıca oturmadan dolayı hasar oluşturan yapılardaki ölçümlerle, yatay şekil değiştirme değeri arasında ilişki kurulmuştur. [9] (Şekil 2.2) Maksimum çekme şekil değiştirmesi, eğilmeden dolayı oluşan birim şekil değiştirme ile yatay birim şekil değiştirmelerinin bileşkesinden ortaya çıkar. Boscardin’in çalışması, tünel açılması sırasında Londra Waterloo İstasyonu’ndaki yapılarda hasar durumlarını araştırmak için kullanılmıştır. Çalışmada yıguna yapılardaki yıguna duvarlara saplanan kirişlerde zemin oturması sırasında meydana gelen etkiiyi incelemiş ve binadaki açısal düzensizliklerin binada meydana gelen hasarlarda önemli bir etken olduğu, binanın geometrisinin ve zemin hareketlerinin etkileriyle oluşan kabul edilebilir kritik gerilme ve hasarları belirlenmiştir. [17]

![](image)

Şekil 2.2 Hasar dağılımları [Boscardin ve Cording, 1989]
Ayrıca Moorak Son v.d. kent içindeki açık kazıların yapılara olan etkilerinin incelemek için laboratuar ortamında ölçekli modeller geliştirmiş ve bu modeller üzerinde fiziksel deneyleri yapmışlardır. Yapılan fiziksel deneyleri ile elde ettikleri oturmalar sonucu, yapılarda oluşan hasar düzeylerini deneysel olarak tablolaştırmışlardır. (Şekil 2.3)

Şekil 2.3 Hasar dağılımları (Moorak Son)
3. Çalışmanın Yöntemi

3.1 Statik İtme Analizi

Yapılar için, sabit düzey yükler altında, yatay yüklerin kademeli artırılmasıyla yapılan doğrusal olmayan hesap yöntemine “Statik İtme Yöntemi” denir. Bu yöntem, binanın deprem esnasındaki davranışını daha gerçekçi olarak temsil ettiği için, hesaplamaların daha doğru bir şekilde yapılmasına imkan tanılmaktadır. Statik itme yönteminde binanın tüm elemanlarının şekil değiştirme davranışlarını tanımlanır. Bu hesaplama yönteminde malzemenin elstiklik sınırları dışında kalan plastiklik kapasitesinden de yararlanılmaktadır.

“A ve 1A” noktaları arasında sistem elemanı doğrusal davranış gösterir.
- “1A” noktası; elastik davranışın sona erdiği plastik davranışın dolayıyla da plastik şekil değiştirmelerin başladıgı noktası.
- “C” noktası, sistem elemanının taşıma gücün sınırlar durumunu belirtmektedir.
- “D” noktasından sonra şekil değiştirmelerin artması durumları için eleman kesiti küçük değerler almaktadır.
- “E” noktası ise, sistem elemanı taşıma gücünü tamamen kaybetmektedir.

Gelen şekil değişirme seviyesi itibariyle binada deprem sonrası oluşacak hasar seviyesi belirlenmektedir. Ayrıca, binanın hangi kesitlerinin daha fazla zorlanmaya maruz kaldığı görülebilecek ve ona göre güçlendirme yapılacaktır, güçlendirme maliyeti optimum bir seviyeye çekilerek daha ekonomik bir şekilde bina güvenliği öngörülen düzeyeye getirilir. Statik - itme yöntemi deprem kuvvetlerinin binadan talep ettiği ile binanın o depreme verebileceği cevabın (kapasite, kuvvet - yer değiştirmeye (pushover egrisi) kesiştiği noktadaki, diğer bir değişle performans noktasındaki durumun incelenmesidir.

Binanın yatay yük taşıma kapasitesini ifade eden kapasite eğrisini elde edebilmek için bina, sabit düşey yükler ve artan yatay yükler altından, malzeme ve
geometri değişimi bakımından doğrusal olmayan artımsal itme analizine göre hesaplanarak limit duruma ulaşmaya kadar bu değişimler gözlenir. Bu değişimler sonucunda, düşeyde her yük değer için tepki kuvvetleri olan toplam taban kesme kuvvetleri \( (V_i) \) ve yatayda çatı (tepe) yer değiştirmelerinin \( (\delta_c) \) kesişen noktalarının geometrik olarak birleştirilmesiyle elde edilen eğri kapasite eğrisidir. Bu eğriye pushover eğrisi de denilmektedir. Şekil 3.2'de kapasite eğrisinin elde edilmesi görülmektedir.

Şekil 3.2 Kapasite eğrisinin elde edilmesi

3.2 SAP2000 Yazılımı


Sonlu Elemanlar Analizi fiziksel bir sistemin matematik olarak ifade edilmesidir. Bu sistem alt parçalara ayrılabilen model olup, malzeme özelliklerine ve uygulanabilir sınır şartlarına sahiptir. (Şekil 3.3)
Sonlu Elemanlar Yöntemi lineer malzeme davranışını ele alabildiği gibi malzemenin lineer olmayan davranış problemlerini de ele alabilmemize olanak sağlamaktadır. Lineer olmayan malzeme davranışı lineer olmayan elastik veya elasto-plastik davranıştır. Zeminin elasto-plastik malzeme davranışında olduğu kabulü ile modellerde lineer olmayan zeminsel davranışı kabulü yapmış olmak, gerçeğe çok yakın çözümlerin elde edilmesini sağlamaktadır [18].

Sonlu elemanlar yöntemi, nümerik yaklaşımların genel özelliklerinin çoğunu göz önüne almasına ilave olarak bilgisayar yazılımları için en uygun formülasyona sahiptir. Bunun nedeni, karmaşık sınır koşulları ve doğrusal olmayan malzeme davranışı, homojen olmayan malzemeler gibi zor ve karmaşık problemlerin çözümünde sistematik bir programlamaya müsaade etmesidir. Diğer yandan bu yöntem mühendisliğin çok geniş bir alanında (katı cisim mekaniği, termoelastiste, hidromekanik, elektrik, yayılım gibi) sınır değer problemlerine uygulanabilmektedir. [19]

Yapı modelinin üç boyutlu modellemesi, problemin analizi, boyutlandırma, kesit optimizasyonu ve gerek olduğu takdirde modellemede yapılacak değişiklikler olduğunda kullanıcı dostu bir ortam sağlamaktadır. SAP2000 Ver.14.0 ile yapının gerçek davranışına uygun olarak tüm yükleme tiplerinin ve yer değiştirmelerin görüntülenmesi de mümkündür.

Bu çalışmada tüm çözümlemeler SAP2000 Ver.14.0 yazılımı kullanılarak yapılmıştır.
4. TÜNEL KAZISI SONUCU YÜZEY OTURMALARININ ETKİLERİNİN İNCELENMESİ

4.1 Yüzey Oturmalarının Tahmini


- Yüzey Oturma Eğrisi – Gauss Hata Fonksiyonu

\[ S = S_{nokt} \cdot e^{-\frac{x^2}{2t^2}} \]

Etki alanı : 3 i

Bu eğrilerin tünel doğrultusunda entegre edilmesiyle oturma yüzeyi elde edilir. Tipik bir oturma eğrisi Sekil 4.1’de gösterilmiştir.
Şekil 4.1 Tünel kazısı nedeniyle oluşan oturma eğrisi [20]

Burada $S_{\text{max}}$ tünel aksı üzerinde yer alan maksimum oturma değeri, x aks üzerinden itibaren yanal mesafe değeridir. Oturma çukurunun genişliği, merkezden eğrinin bükmü noktasına olan mesafesini belirten “i” parametresiyle belirlenir. Çukur genişlik ifadesi i, tünel açma metoduna bağlı olmayıp zemin durumuna bağlı olarak belirlenebilir. i parametresinin belirlenmesi için çeşitli yaklaşımlar mevcuttur [23] ancak pratikte, $i = K \times Z$ şeklinde hesaplanabilir. Burada kelli zeminler için $K*=0,5$ ve kohezyonsuz zeminler için de $K*=0,25$ alınmaktadır [24].

Bu çalışmada iki aşamalı bir hesap yöntemi kullanılmıştır. Birinci aşamada kullanılan tünel kazıları nedeniyle oluşan yüzey çökmenin oturma profili aşağıdaki deneysel eşitlikle hesaplanmıştır. Bu hesaplamada Erçelebi’nin İstanbul metro tünele rinin geçtiği yüzey şekli değiştirmelerinin deneysel çkmeye miktarları ile oluşturulmuş olduğu deneysel tahminleri göz önüne alınarak analiz sayılarnı makul bir seviyede tutabilmek için çukur genişliği 60.0 m olarak seçilmiştir ve yine bu hesaplamalarda Tünel merkezindeki maximum çömke yani $S_{\text{max}}$ çökme derinliği için yapılan deneysel tahminler 25, 50 ve 75 mm olarak yapılmıştır.
Yapılan bu tahminler ışığında eşişlikten yararlanarak aşağıdaki profiller elde edilmiştir. Söz konusu eşişlik, üzerinde yapı olmayan zeminler için türetilmesine rağmen kent içindeki yapılar yoluyla yayınlanan çalışmalar içinde uygun kabul edilmiş, kullanılan çökme değerleri aşağıdaki tablolarda gösterilmiştir. İlk aşamada ise model yapılar belirlenmiş ve ilk aşamada elde edilen yüzey çökme miktarları yapılarla uygulanmış ve statik itme analizi yöntemi kullanılarak çözümlenmiştir. Bu işlemler sırasında basit deneySEL yöntemler ile kompleks yöntemler arasında uygun bir denge kurulmuştur.

Tablolarda; kullanılan 5.0, 6.0 ve 7.0 m kiriş açıklıklı modellerin tekil temellerinin çökme eğrisi üzerindeki yerlerine göre çökme değerleri verilmiştir. Örneğin, 5.0 m açıklıklı bir yapının tünel merkezinde tekil temellerindeki çökme miktarları şekil de gösterildiği gibi tablo değerlerinden faydalanarak modellenmiştir. Ayrıca tablo değerleri modelin tünel merkezinde çökme eğrisi üzerinde 3 farklı konumlandırılmış yapının yani sıra birer kılık açıklıklı kaydırılarak 3 farklı şekilde çökme eğrisi üzerinde konumlandırılmış ve her konumdan çökme eğrisi üzerindeki tekil temellerin çökme miktarları tablolarda hesaplanmış ve modellenmiştir.
Tablo 4.1 Tünel kazısı üzerindeki 5.0 m açıklıklı yapı için çökme değerleri

<table>
<thead>
<tr>
<th>Tünel Çapı (m)</th>
<th>6,70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çukur Genişliği (m)</td>
<td>60</td>
</tr>
<tr>
<td>Dönüm Noktası (m)</td>
<td>10.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Smax (mm)</th>
<th>25,00</th>
<th>50,00</th>
<th>75,00</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tünel Merkezinden Uzaklık (m)</th>
<th>Yüzey Çökmesi (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>0,00</td>
</tr>
<tr>
<td>-40</td>
<td>-0,01</td>
</tr>
<tr>
<td>-30</td>
<td>-0,28</td>
</tr>
<tr>
<td>-20</td>
<td>-3,38</td>
</tr>
<tr>
<td>-15</td>
<td>-8,12</td>
</tr>
<tr>
<td>-10</td>
<td>-15,16</td>
</tr>
<tr>
<td>-5</td>
<td>-22,06</td>
</tr>
<tr>
<td>0</td>
<td>-25,00</td>
</tr>
<tr>
<td>5</td>
<td>-22,06</td>
</tr>
<tr>
<td>10</td>
<td>-15,16</td>
</tr>
<tr>
<td>15</td>
<td>-8,12</td>
</tr>
<tr>
<td>20</td>
<td>-3,38</td>
</tr>
<tr>
<td>30</td>
<td>-0,28</td>
</tr>
<tr>
<td>40</td>
<td>-0,01</td>
</tr>
<tr>
<td>50</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Şekil 4.3 Tünel kazısı üzerindeki 5.0 m açıklıklı yapı için çökme grafiği
Tablo 4.2 Tünel kazısı üzerindeki 6.0 m açıklıklı yapı için çökme değerleri

| Tünel Çapı (m) | 6,70 |
| Çukur Genişliği (m) | 60 |
| Dönüm Noktası (m) | 10,00 |
| Smax (mm) | 25,00 50,00 75,00 |

<table>
<thead>
<tr>
<th>Tünel Merkezinden Uzaklık (m)</th>
<th>Yüzey Çökmesi (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>0,00 0,00 0,00</td>
</tr>
<tr>
<td>-40</td>
<td>-0,01 -0,02 -0,03</td>
</tr>
<tr>
<td>-30</td>
<td>-0,28 -0,56 -0,83</td>
</tr>
<tr>
<td>-24</td>
<td>-1,40 -2,81 -4,21</td>
</tr>
<tr>
<td>-18</td>
<td>-4,95 -9,89 -14,84</td>
</tr>
<tr>
<td>-12</td>
<td>-12,17 -24,34 -36,51</td>
</tr>
<tr>
<td>-6</td>
<td>-20,88 -41,76 -62,65</td>
</tr>
<tr>
<td>0</td>
<td>-25,00 -50,00 -75,00</td>
</tr>
<tr>
<td>6</td>
<td>-20,88 -41,76 -62,65</td>
</tr>
<tr>
<td>12</td>
<td>-12,17 -24,34 -36,51</td>
</tr>
<tr>
<td>18</td>
<td>-4,95 -9,89 -14,84</td>
</tr>
<tr>
<td>24</td>
<td>-1,40 -2,81 -4,21</td>
</tr>
<tr>
<td>30</td>
<td>-0,28 -0,56 -0,83</td>
</tr>
<tr>
<td>40</td>
<td>-0,01 -0,02 -0,03</td>
</tr>
<tr>
<td>50</td>
<td>0,00 0,00 0,00</td>
</tr>
</tbody>
</table>

Şekil 4.4 Tünel kazısı üzerindeki 6.0 m açıklıklı yapı için çökme grafiği
Tablo 4.3 Tünel kazısı üzerindeki 7.0 m açıklıklı yapı için çökme değerleri

| Tunel Çapı (m) | 6.70 |
| B |
| Çukur Genişliği (m) | 60 |
| Dönüm Noktası (m) | 10.00 |
| Smax (mm) | 25.00 |

<table>
<thead>
<tr>
<th>Tunel Merkezinden Uzaklık (m)</th>
<th>Yüzey Çökmesi (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>0.00 0.00 0.00</td>
</tr>
<tr>
<td>-40</td>
<td>-0.01 -0.02 -0.03</td>
</tr>
<tr>
<td>-30</td>
<td>-0.28 -0.56 -0.83</td>
</tr>
<tr>
<td>-28</td>
<td>-0.50 -0.99 -1.49</td>
</tr>
<tr>
<td>-21</td>
<td>-2.76 -5.51 -8.27</td>
</tr>
<tr>
<td>-14</td>
<td>-9.38 -18.77 -28.15</td>
</tr>
<tr>
<td>-7</td>
<td>-19.57 -39.14 -58.70</td>
</tr>
<tr>
<td>0</td>
<td>-25.00 -50.00 -75.00</td>
</tr>
<tr>
<td>7</td>
<td>-19.57 -39.14 -58.70</td>
</tr>
<tr>
<td>14</td>
<td>-9.38 -18.77 -28.15</td>
</tr>
<tr>
<td>21</td>
<td>-2.76 -5.51 -8.27</td>
</tr>
<tr>
<td>28</td>
<td>-0.50 -0.99 -1.49</td>
</tr>
<tr>
<td>30</td>
<td>-0.28 -0.56 -0.83</td>
</tr>
<tr>
<td>40</td>
<td>-0.01 -0.02 -0.03</td>
</tr>
<tr>
<td>50</td>
<td>0.00 0.00 0.00</td>
</tr>
</tbody>
</table>

Şekil 4.5 Tünel kazısı üzerindeki 7.0 m açıklıklı yapı için çökme grafiği
4.2 Zemin Yapı Etkileşimi


32
karakteridirler. Bu etkiler serbest zemin hareketinin yüksek frekanslı (kisa periyotlu) bileşenlerine uygulanan bir filtrelemedir. Bu etkilerin kısà periyotlu binalar için yaptığı tepkisi üzerindeki etkisi büyük olacaktır.

Şekil 4.6 Temel Modeli Kabulleri


4.3 Yapısal Analiz Modelleri

4.3.1 Modelin Oluşturulması

Yapının geometrik olarak tanımlanabilmesi için akslar ve kat yükseklikleri belirlenmiştir. Yapısal analiz modeli seçilirken Türkiye’deki ve İstanbul’daki yapılar için temel kabulleri genel kabul görmüş bulunmaktadır.
stoğunun büyük bir bölümü temsil eden 5 katlı her iki yönde de 4 açıklıklı 5.0, 6.0 ve 7.0 m kiriş açıklıklarına sahip olmak üzere 3 farklı yapılı model geliştirilmiştir. Binaların kat yükseklikleri 3.0 m alınmıştır (Şekil 4.7)

Şekil 4.7 Aks sisteminin SAP2000 programında oluşturulması

4.4 Yapısal Yükleme

Modellerde kullanılan canlı yük Q = 3.5KN/m², ölü yük ise G = 4.0 KN/m² uygulanmış ayrıca modelde perde duvar ve döşeme kullanılmamış binaların bu yapısal olmayan yüklerini telafi etmek için ek bir ölü yük olarak G = 5 KN/m² yük uygulanmıştır.
Şekil 4.8 5.0 m açıklıktaki yapıya uygulanan ölü yük 3 boyutlu gösterim

5.0 m açıklıktaki yapıya uygulanan ölü yük 3 boyutlu gösterim şekil 4.8 deki gibidir. Ayrıca 7.0 m açıklıktaki yapıya uygulanan hareketli yük şekil 4.9 da gösterilmiştir.

Şekil 4.9 7.0 m açıklıktaki yapıya uygulanan hareketli yük
4.4.1 Malzeme Sınıfı Ve Kesit Tanımlamaları

Yapının 2007 deprem yönetmeliğine göre 1. derece deprem bölgesinde olduğu varsayılır etkin yer ivmesi kat sayısı $A_0 = 0.4$ kullanılmıştır. Yine yönetmelikteki Z3 zemin cinsi kabul edilmiş ve spekturum karakteristik peryotları $T_A$ ve $T_B$ sırasıyla 0.15 ve 0.60 olarak kullanılmıştır. Betonarme tasarımı için ise Türkiye deki tipik konut ve ticari yapılarında kullanılan TS500 - Betonarme Yapıların Yapım ve Tasarım kuralları başlıklı Türk standardına göre çerçeve elemanlar için beton sınıfı için $f_c = 25$ Mpa ve çelik sınıfı için $f_y = 420$ Mpa kullanılmıştır. Şekil 4.10 da modelde kullanılan beton özellikleri verilmiştir.

![Beton Özellikleri](image)

Şekil 4.10 Modelde kullanılan beton özellikleri

Bu varsayımlara göre 3 modeli de kapsayacak şekilde kolon ebatları 500x500mm olarak kiriş ebatları ise 300x600mm olarak seçilmiş ve modele uygulanmıştır. (Şekil 4.11)
Şekil 4.11 Modelde kullanılan kolon ve kiriş ebatları

Kolonların eksenel yük moment etkileşim diyagramı şekil 4.20 de gösterilmiş olup Analizde kesit alanı $A_c=2500\ \text{cm}^2$ alınmıştır.

Şekil 4.12 Kolonların eksenel yük moment etkileşim diyagramı
4.4.2 Yüzey Oturmalarının Programa Tanımlanması

5.0, 6.0 ve 7.0 m kiriş açıklıklı yapılar 0, 25, 50 ve 75 mm azami çıkma derinliği olan 3 farklı çıkma eğrisi ve çıkmağının olmadığı normal zemin üzerinde modellenmiş ve 3 farklı çıkma eğrisi üzerinde her bir model birer açıklık kaydırma şartıyla 3 defa kaydırılarak yerleştirilmiştir. Toplam 36 adet farklı model tasarlanarak yapılmıştır. (Şekil 4.13)

Şekil 4.13 Yapı'nın tünel üzerindeki konumu
Yapının tünel merkezinde 25, 50 ve 75 mm çökme eğrileri üzerindeki konumu Şekil 4.13a'da. Yapının tünel merkezinden 1 açıklık boyu kaydırılması ile 25, 50 ve 75 mm çökme eğrileri üzerindeki konumu şekil 4.13b de ayrıca yapının tünel merkezinden 2 ve 3 açıklık boyu kaydırılması ile oluşan tünel üzerindeki konumları şekil 4.13c-4.13d de gösterilmiştir.

Tüm bu yapısal tasarımlar yapıldıktan sonra bölüm 4.1 de hesaplanan ve tablolarda gösterilen çökme eğrisi üzerinde bulunan tekil temellerdeki çökme miktarı yapının tünel merkezinden uzaklıklarına göre programa veri olarak girilmiştir. (Şekil 4.14)

Şekil 4.14 Çökme miktarı yapıların tünel merkezinden uzaklıklarıına göre programa veri olarak girilmesi

3 farklı çökme eğrisi üzerinde her bir model birer açıklık kaydırma şartıyla 3 defa kaydırılarak yerleştirilmiştir. Toplam 36 adet farklı model tasarlanarak statik itme analizi yöntemi ile çözümleme yapılmıştır.
Statik itme analizi bölüm 3.2 de ayrıntılı biçimde anlatılmıştır. Bu analiz için yapına uygulanan yatay yükler Şekil 4.15 de gösterildiği gibi modele uygulanmıştır.

4.4.3 Zemin - Yapı Etkileşimli Çözüm

Yay katsayılarının hesaplanmasının için formüllerde kullanılan B ve L değerleri İstanbul’da projeksiyonunun temsil etmesi amacıyla B=L = 2.4 m kabul edilmiştir. Ayrıca önceki bölümlerde bahsedilen İstanbul’un zemin koşullarını temsil eden makulν hesapında kum için 0.3 kil için 0.45 katsayıları olduğu göz önüne alınarak, zemin kil kum arasında kabul edilmiş ν=0.35 alınmıştır. Kayma modülü G için ise 100000 kPa kullanılmıştır.
Böylece temeldeki 6 hareketten 3’ü sabit 3’ü de yay olacak şekilde programa tanımlanmıştır. Yay tanımlamaları Şekil 4.17 de gösterildiği gibi modellere uygulanmıştır. Böylece daha önce oluşturduğumuz 36 farklı model 72 modele yükselmiş olup yay etkisi de çalışmada parametre olarak kullanılmaktadır.
5. ANALİZ VE SONUÇLARIN DEĞERLENDİRİLMESİ

Önceki bölümlerde de tarif edildiği üzere 60.0 m genişliğindeki oturma çukuru analiz için seçilmiştir olup; 5 katlı 3 farklı kiriş açıklığında tanımlanan (5.0m 6.0m ve 7.0m) yapılar 4 farklı noktada konumlandırılmıştır. Bu 4 farklı konumdaki oturmalar hesaplanmış olup konumlandırma şekil 4.13 de gösterilmiştir.

Yukarıda da belirtiliği gibi yapılan analizler 4 farklı parametre göre değerlendirilmiştir. Birinci parametre yapıların tünel merkezine göre konumları ikinci parametre tünellerde meydana gelen maksimum çökme derinliği, üçüncü parametre yapının kiriş açıklıkları, dördüncü parametre ise yapı-zemin etkileşiminde kullanılan yaylar olarak belirlenmiştir.

Öncelikle ilk üç parametre birbirler arasında kıyaslanarak sonuçlar tartışılmıştır. Daha sonra yapılan kıyaslanmalar dördüncü parametre olan yaylı modeller eklenerek modellerdeki yayların etkileri değerlendirilmiştir.

Kullanılan birinci parametrede yapıların konumlandırıldığı ilk pozisyonlar (sekiller 4.2 CL=0.0 m) çukurun merkezindeidir. Yapılar 3’er kez ötelenerek (5.0 m kiriş açıklıklı yapı için 5.0, 10.0, ve 15.0 m, 6.0m kiriş açıklıklı yapı için 6.0 m - 12.0 m - 18.0 m, 7.0 m kiriş açıklıklı yapı için 7.0m-14.0m-21.0m) merkezdeki konumları ile birlikte her yapı için 4 ayrı analiz konumu elde edilmiştir. Bu bölümde yapının tünel üzerindeki konumları 1. konumu, 2. konumu, 3. konumu ve 4.konumu diye söz edilecektir. Her konum için 25mm 50mm ve 75mm çökme derinliğini ikinci parametre olarak hesaba katılmış, üçüncü parametrenin katılmasıyla 36 modelde çözümleme yapılmıştır. Bu çözümlemelere dördüncü parametre nin eklenmesiyle model sayısı 72
ye yükselmiştir. Her yapı için belirlenen dört konumun çukurdaki en uygun konumlar olduğu kabul edilmiştir.

Birinci konumda yapı_tunnel merkezinde olduğundan U şekline benzer simetrik bir oturma profili ortaya çıkmıştır. İkinci konumda ise oturma profili yine U şeklindeki profil benzer olup bir tarafından çarpıklığa sahiptir. Üçüncü konum bir tür kayma şeklindeki çökme profili olarak kabul edilebilir. Dördüncü (son) konum ise üçüncü konuma benzemekle birlikte açık kazılandaki çökme tipine uymaktadır.


<table>
<thead>
<tr>
<th>KODLAMA</th>
<th>CCPSH</th>
<th>25MM</th>
<th>0M</th>
<th>5MERE</th>
<th>YAYSIZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maksimum çökme derinliği</td>
<td>YAPININ TÜNEL MERKEZINE UZAKLIĞI</td>
<td>YAPININ AKS AÇILIGI</td>
<td>YAPININ TEMELİNDEKI YAY DURUMU (BELIRTEMEYENLERDE YAY MEVCUT)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Grafikler elde edilirken kullanılan kodlama yöntemi yukarıdaki tabloda gösterilmiştir. (Tablo5.1)

5.1 Dayanımın Tünel Aksı Üzerindeki Konumlara Değerlendirilmesi

Yapılan analizlerden elde edilen sonuçlara göre 5.0 metre kiriş açıklığındaki yapı 25 mm çökme derinliğinde tünel merkezindeki konumlara göre kıyaslandığında tünel merkezinden 10.0 ve 15.0 m uzaklıklı 3. ve 4. konumlardaki yapıların grafikleri birbirine hemen hemen aynı olup ortuşmaktadır. (Şekil 5.1) Tünel merkezindeki 1. konumda yapının akma dayanımı en yüksek olarak görülmesine birikte merkezden uzaklaştırılınca dayanımı düşmektedir. Bunun nedeni yukarıda belirtilmiş gibi merkezdeki oturma profilinin U şeklinde simetriye sahip olması diğer konumlardaki profillerde ise seve yerleştirilmiş yapısı pozisyonunun olmasıdır.

Şekil 5.1 25 mm çökme derinliğinde 5.0 m açıklıklı yapının 0.0 - 5.0 – 10.0 -15.0 m konumları
Şekil 5.2 50 mm çökme derinliğinde 5.0 m açıklıklı yapıların 0.0 - 5.0 – 10.0 -15.0 m konumları

Şekil 5.3 75 mm çökme derinliğinde 5.0 m açıklıklı yapıların 0.0 - 5.0 – 10.0 -15.0 m konumları
Aynı şekilde 5.0 m açıklıklı yapı 50 mm ve 75 mm çökme derinliklerinde тunnel merkezinden konumlarına göre karşılandığında тunnel merkezinden uzaklaştırıldığında 25 mm çökme derinliğindeki yapıya benzer özellik göstermekte fakat 3. ve 4. konumda grafikler ayrıntı edilebilir şekilde gelmektedir. Bu durum bize gösteriyor ki çökme derinliğinin artması тunnel merkezinden uzaktaki yapıları daha fazla olumsuz yönde etkilemektedir. (Şekil 5.2, Şekil 5.3)

![Diagram](image)

Şekil 5.4 25 mm çökme derinliğinde 6.0 m açıklıklı yapının 0.0 -6.0 - 12.0 -18.0 m konumları

Bir sonraki yapı modeli olan 6.0 metre kiriş açıklığındaki yapının aynı şekilde 3 kez açıklık oranında kaydırılmasıyla konumları incelediğinde 25 mm çökme derinliğinde тunnel merkezindeki konumlara göre bu kez тunnel merkezinden 2, 3 ve 4. konulardaki yapıların grafikleri birbiriyle hemen hemen aynı olduğu ve birbiryle örtüştiği görülmektedir. (Şekil 5.4) Yine тunnel merkezindeki yani 1.konumdaki yapının akma dayanımının yüksek olduğu görülmekte merkezden uzaklaştırılacağı dayanım düşmektedir. Ancak bu değişiklik oldukça az oranda olmaktadır. Tabii ki bu durum çökme derinlığının 25mm gibi küçük değerde olmasının ve açıklık arttığı için

47
yapının çökme profiline 5.0m açıklıklı yapıya göre, yerleşiminin daha geniş sınırlarda olmasını nedenidir. Yani açıklık arttıkça 2. 3 ve 4. konumlardaki değerler birbirine daha yaklaştırığı gözümektedir.

Şekil 5.5 50 mm çökme derinliğinde 6.0 m açıklıklı yapının 0.0-6.0-12.0-18.0 m konumları
Şekil 5.6 75 mm çökme derinliğinde 6.0 m açıklıklı yapının 0.0-6.0-12.0-18.0 m konumları

Aynı şekilde 6.0 m açıklıklı yapının 50 mm ve 75 mm çökme derinliklerinde tünel merkezinden konumlarına göre kıyasladığında tünel merkezinden uzaklaştırıldığında 25 mm çökme derinliğindeki yapıya göre 2. 3. ve 4. konumlardaki yapıların grafikleri ayrıntılı şekilde şeke geldiği görülmektedir. Benzer şekilde 25mm deki gibi merkezdeki yani 1.konumda bulunan yapıının dayanımı uzaktaki konumlamlara göre daha fazladır. (Şekil 5.5, Şekil 5.6)
Şekil 5.7 25 mm çökme derinliğinde 7.0 m açıklıklı yapının 0.0 - 7.0 - 14.0 - 21.0 m konumları

7.0 metre kiriş açıklıklarındaki yapının aynı şekilde 3 kez açıklık oranında kaydırılmasına konuları incelendiğinde ise 25 mm çökme derinliğinde tünel merkezindeki konumlar göre bu kez dört konumda yapının da grafiklerinin birbiriyle hemen hemen aynı olduğu ve birbiriyle örtüştüğü görülmektedir. (Şekil5.9) Yine tünel merkezindeki yapının akma dayanımı yüksek olduğu görülmektedir. Ancak bu değişiklik oldukça az oranda olmaktadır. Tabi ki bu durum yine derinliğin 25mm gibi küçük değerde olmasının ve açıklık arttığı için yapının çökme profiline 5.0 m ve 6.0 m açıklıklı yapılarla göre, yerleşiminin daha geniş sınırlarda olmasını verdiği bir sonuç olarak gözümektedir.
Şekil 5.8 50 mm çökme derinliğinde 7.0 m açıklıklı yapının 0.0 - 7.0 - 14.0 - 21.0 m konumları

Şekil 5.9 75 mm çökme derinliğinde 7.0 m açıklıklı yapının 0-7-14-21 m konumları
Aynı şekilde 7.0 m açıklıklı yapı 50 mm ve 75 mm çökme derinliklerinde tünel merkezinden konumlarına göre kıyaslandığında tünel merkezinden uzaklaştıkça 25 mm çökme derinlığında yapılarla göre 2. 3. ve 4. konumlardaki yapıların grafipleri ayırt edici şekilde geldiği görülmektedir. Fakat bu ayırt edilme 6.0 m açıklıkta göre daha az orandadır. (Şekil 5.8 - 5.9)

Sonuç olarak yapılar çukur üzerindeki konumlarına göre yorumlandığında; grafiklerden de görülebileceği üzere 5.0, 6.0 ve 7.0 m kiriş açıklığındaki yapıların çukur merkezindeki 1. konumunda meydana gelen kapasite azalması diğer 2, 3 ve 4. konumlara göre daha azdır. Bu durum 2. 3. ve 4. (çukurun merkezindeki konum dışında konumlar) konumlarındaki oturmanın şeve yerleştirilmiş yapı tipine benzemesi nedeniyle daha az oturmanın oluşması ile açıklanabilir. Ayrıca yine grafiklerden anlaşılacağı üzere yapılardaki kiriş açıklığıının artması 2. 3. ve 4. konulardaki dayanım değerlerini birbirine yaklaştırmaktadır.

Yapının çukur üzerindeki konumuna göre deprem dayanım kapasitesindeki azalma incelendiğinde aşağıdaki grafikte de görüldüğü üzere tüm çökme derinliklerinde 3. konumdaki kapasite en düşüktür. 25mm ve 50mm çökme derinliğinde yapının açıklığı deprem dayanımını çok fazla etkilememekte fakat 75mm çökme derinliğinde görülmektedir ki açıklık arttıkça dayanım artmaktadır yani açıklığı en az olan yapının dayanımı en azdır. 3. konumda 5.0 m açıklıklı yapıın deprem dayanım kapasitesi % 20 azalırken 6.0 m açıklıklı yapının %15, 7.0 m açıklıklı yapının ise %10 azalığı görülmüştür.
Şekil 5.10 Yapının çukur üzerindeki konumuna göre deprem dayanım kapasitesindeki azalma

5.2 Yapıların Kıriş Açıklığına Göre Kıyaslama

Şekil 5.11 Tünel merkezinde 25mm çökme derinliğinde 5.0, 6.0 ve 7.0 m açıklıklı yapı
Şekil 5.12 Tünel merkezinde 50mm çökme derinliğinde 5.0, 6.0 ve 7.0 m açıklıklı yapı

Şekil 5.13 Tünel merkezinde 75 mm çökme derinliğinde 5.0, 6.0 ve 7.0m açıklıklı yapı
Ayrıca yalnızca kirış açıklığına göre yapılan kıyaslamada ise 25 mm, 50 mm ve 75 mm çökme derinliklerin hepsinde grafiyiklerden de görüleceği üzere yapısı kirış açıklığı yapısı kapasitesine aynı şekilde etki etmektedir. Kirış açıklığı arttıkça yapısı kapasitesindeki azalma orantılı olarak artmaktadır. Konuma göre kıyaslama grafiyikleri ve bu grafiyikler göstermektedir ki açıklık parametresi zaten kendi başına kapasiteyi ters oranda etkilemektedir. (Şekil 5.11 - 5.13)

Konuma göre kıyaslandığından açıklık arttıkça 2. 3. ve 4. konumlardaki veriler birbirine yaklaşmaktadır hatta 7.0 m açıklıkta 1. konum dahi diğer konumlara oldukça yaklaşımıştı fakat görülüyor ki tek başına açıklık parametresi kapasiteyi ters oranda etkilemektedir. Yani kapasiteyi düşürmekte fakat 2. 3. ve 4. konumları birbirine yaklaştırılmaktadır.

Şekil 5.14 0.0 m merkezde 25-50-75 mm çökme derinliğinde 5.0 m açıklıklı yapının konumları
Şekil 5.15 5.0 m kaydırılmış 25, 50 ve 75 mm çökme derinliğinde 5.0 m açıklıklı yapının konumları

Şekil 5.16 25mm çökme derinliğinde 5.0, 6.0 ve 7.0m açıklıklı yapının çukur üzerindeki konumuna göre deprem dayanımındaki azalma
Şekil 5.17 50mm çökme derinliğinde 5.0, 6.0 ve 7.0 m açıklıklı yapının çukur üzerindeki konumuna göre deprem dayanımındaki azalma

Şekil 5.18 75mm çökme derinliğinde 5.0, 6.0 ve 7.0 m açıklıklı yapının çukur üzerindeki konumuna göre deprem dayanımındaki azalma
Yapıların kırış açıklıklarına göre deprem dayanımları kıyaslandığında görülükmektedir ki bir önceki bölümde bahsettiğimiz gibi 25mm ve 50mm de kırış açıklığının önemli bir etkisi yoktur. Fakat 75mm çökme derinliğinde kırış açıklığının her 1.0 m artmasıyla dayanım %5 artmaktadır. Yani yapının chuuk üzerinde geniş bir alana oturması yapıdaki oturma çarpıklığını azaltmaktadır.

5.3 Yapıların Çökme Derinliğe Göre Kıyaslanması

Konuyu diğer bir parametremiz olan çökme derinliğine göre kıyasladığımızda ise 5.0 m açıklıklı yapı için 1. ve 2. konumda üç çökme derinliği için aynı değerleri elde ediyoruz.. (Şekil 5.19)

Şekil 5.19 10.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 5.0 m açıklıklı yapının konumları
Şekil 5.20  15.0 m kaydırmış 25-50-75 mm çökme derinliğinde 5.0 m açıklıklı yapının konumları


Şekil 5.21  0.0m merkezde 25-50-75 mm çökme derinliğinde 6.0 m açıklıklı yapının konumları
Şekil 5.22 6.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 6.0 m açıklıklı yapıların konumları

Aynı şekilde 6.0 m açıklıklı yapı için üç çökme derinliği ele alındığında görülüyor ki 5.0 m açıklıktaki yapıdan farklı olarak daha 2. konumda kapasite azalması etkilenmektedir. Yani 5.0 m de 3. ve 4. konumda etkilenen yapı 6.0 m açıklıkta 2. konumdan itibaren etkilenmiştir.

Şekil 5.23 12.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 6.0 m açıklıklı yapıların konumları
Şekil 5.24 18.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 6.0 m açıklıklı yapının konumları

Açıklığın kendi başına kapasiteyi etkiledğini daha önce belirtildi. Dolayısıyla 6.0 m açıklıkta 3. ve 4. konumda etkilenme oranı daha fazla olmuştur.

Şekil 5.25 0.0 m merkezde 25-50-75 mm çökme derinliğinde 7.0 m açıklıklı yapının konumları

61
Şekil 5.26 7.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 7.0 m açıklıklı yapının konumları

Şekil 5.27 14.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 7.0 m açıklıklı yapının konumları
Şekil 5.28 21.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 7m açıklıklı yapının konumları

Yine 7.0 m açıklıklı yapının çökme derinliğindeki veriler 6.0m açıklığındaki yapıya benzer özellik göstermektedir. Yani 2. konumdan itibaren çökme derinliği yapı kapasitesini aynı şekilde etkilemiştir.

Sonuç olarak yapılar maksimum çökme derinliklerine göre yorumlandığında yapıların konumlarına göre çökme derinliği farklı şekilde etkilemiştir. Genel olarak 1. ve 2. konumlarda çökme derinliğinin yapı kapasitesine etkisi yok denecek kadar az olurken, 3. ve 4. konumlarda bu etki daha da artmıştır. Ayrıca açıklık arttıkça yani 6.0 m ve 7.0 m açıklıklarda 2. konumda da etki meydana gelmiştir. Maksimum çökme arttıkça akma kapasitesindeki azalmanın daha fazla olduğu görülmüştür.
Şekil 5.29 25mm 50mm ve 75 mm çökme derinliğinde 5.0 m açıklıklı yapının çukur üzerindeki konumuna göre deprem dayanımındaki azalma

Şekil 5.30 25mm 50mm ve 75 mm çökme derinliğinde 6.0 m açıklıklı yapının çukur üzerindeki konumuna göre deprem dayanımındaki azalma
Şekil 5.31 25mm, 50mm ve 75 mm çökme derinliğinde 7.0 m açıklıklı yapının çukur üzerindeki konumuna göre deprem dayanımındaki azalma

5.4 Yapılarla Elastik Yay Tanımlanması Sonucu

Çalışmada ilk üç parametre; maksimum çökme derinliği, çukur üzerindeki konum ve kiriş açıklığı irdelenmiş olup; dördüncü parametrede yapı zemin etkileşimin daha iyi incelebilmesi için temelde kolon altlarına elastik yay tanımlaması yapılmış ve elastik yaylar ilgili kolonun tenebe bağlı olan düğüm noktasında tanımlanmıştır. Daha önce belirttiğimiz gibi yapılan 36 farklı analiz koşulu için yeni 36 farklı yay durumu analiz koşulu elde edilmiştir. Bununla ilgili sonuçlar aşağıdaki grafiklerde verilmiştir.

Aynı grafiklere yay durumunun etkisini görebilmek için yapılan yaylı modellerin grafipleri eklenmiş ve yay etkisi incelemiştir.
Şekil 5.32 0.0 m merkezde 25-50-75 mm çökme derinliğinde 5.0 m açıklıklı yapının konumları

Şekil 5.33 5.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 5.0 m açıklıklı yapının konumları
Şekil 5.34 10.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 5.0 m açıklıklı yapının konumları

Şekil 5.35 15.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 5.0 m açıklıklı yapının konumları
Şekil 5.36 0.0 m merkezde 25-50-75 mm çökme derinliğinde 6.0 m açıklıklı yapının konumları

Şekil 5.37 6.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 6.0 m açıklıklı yapının konumları
Şekil 5.38 12.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 6.0 m açıklıklı yapının konumları

Şekil 5.39 18.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 6.0 m açıklıklı yapının konumları
Şekil 5.40  0.0 m merkezde 25-50-75 mm çökme derinliğinde 7.0 m açıklıklı yapının konumları

Şekil 5.41  7.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 7.0 m açıklıklı yapının konumları
Şekil 5.42 14.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 7.0 m açıklıklı yapının konumları

Şekil 5.43 21.0 m kaydırılmış 25-50-75 mm çökme derinliğinde 7.0 m açıklıklı yapının konumları
Şekil 5.44 25 mm çökme derinliğinde 5.0 m açıklıklı yapının 0.0-5.0-10.0-15.0 m konumları

Şekil 5.45 50 mm çökme derinliğinde 5.0 m açıklıklı yapının 0.0-5.0-10.0-15.0 m konumları
Şekil 5.46 75 mm çökme derinliğinde 5.0 m açıklıklı yapının 0.0-5.0-10.0-15.0 m konumları

Şekil 5.47 25 mm çökme derinliğinde 6.0 m açıklıklı yapının 0.0-6.0-12.0-18.0 m konumları
Şekil 5.48 50 mm çökme derinliğinde 6.0 m açıklıklı yapının 0.0-6.0-12.0-18.0 m konumları

Şekil 5.49 75 mm çökme derinliğinde 6.0 m açıklıklı yapının 0.0-6.0-12.0-18.0 m konumları
Şekil 5.50 25 mm çökme derinliğinde 7.0 m açıklıklı yapının 0.0-7.0-14.0-21.0 m konumları

Şekil 5.51 50 mm çökme derinliğinde 7.0 m açıklıklı yapının 0.0-7.0-14.0-21.0 m konumları
Yukarıdaki grafiklerde görüldüğü üzere temelde yaylı durumda taban kesme kuvvetine karşılık yanal yer değiştirmenin yaysız duruma göre daha az olduğu tespit edilmiştir. Yani yapının kapasitesi yaylı modelde ankastre temel modeline göre daha azalmış görünmektedir.

Şekil 5.52 75 mm çökme derinliğinde 7.0 m açıklıklı yapının 0.0-7.0-14.0-21.0 m konumları
Şekil 5.53 25, 50 ve 75 mm çökme derinliğinde 5.0 m açıklıklı yapının çukur üzerindeki konumuna ve yay durumuna göre deprem dayanımındaki azalma

Şekil 5.54 25, 50 ve 75 mm çökme derinliğinde 6.0 m açıklıklı yapının çukur üzerindeki konumuna ve yay durumuna göre deprem dayanımındaki azalma
Şekil 5.55 25, 50 ve 75 mm çökme derinliğinde 7.0 m açıklıklı yapının çukur üzerindeki konumuna ve yay durumuna göre deprem dayanımındaki azalma

Şekil 5.56 25 mm çökme derinliğinde 5m 6m ve 7m açıklıklı yapının çukur üzerindeki konumuna ve yay durumuna göre deprem dayanımındaki azalma
Şekil 5.57 50mm çökme derinliğinde 5m, 6m ve 7m açıklıklı yapının çukur üzerindeki konumuna ve yay durumuna göre deprem dayanımındaki azalma

Şekil 5.58 75mm çökme derinliğinde 5m, 6m ve 7m açıklıklı yapının çukur üzerindeki konumuna ve yay durumuna göre deprem dayanımındaki azalma
6. SONUÇ ÖNERİLER

Bu çalışmada, 1975 deprem yönetmeliğine göre yapılmış betonarme çerçeve yapılarda, tünel inşaatı neticesinde oluşan farklı yüzey oturulmaları neticesinde oluşacak sismik dayanım değişiklikleri sayısal olarak irdelemiştir. Analizlerde, tünel kazısı neticesinde oluşan yüzey çukur, İstanbul için oldukça tipik olduğu varsayılan 60.0 m genişlik seçilmiştir. Diğer yandan, yapılar yine İstanbul’da bilhassa 1975 – 2000 dönemi arası konut amaçlı inşa edilmiş yapılanların temsil ettiği düşüncesiyle 5 katlı ve 5.0, 6.0, 7.0 m kiriş açıklığına sahip 4 açıklı yapılara olarak tasarlanmıştır. Yapılar oturumların etkisinin gözlenmesi amacıyla çukur üzerinde farklı noktalarda konumlandırılmıştır. Yüzey çukurunda azami oturma değerleri ise yine İstanbul’da tünel inşaatları için oldukça tipik değerler olan 25, 50 ve 75 mm seçilmiştir. Çalışma da analizler, statik doğrusal olmayan itme yöntemi ile yapılmıştır.

Ayrıca yapı zemin etkileşiminin daha iyi incelenmesi açısından temelde kolon altlarına elastik yay tanımlaması yapılmış ve elastik yayar ilgili kolonun temele bağlanan düğüm noktasında tanımlanmıştır. Temelde yaylı durumda taban kesme kuvvetine karşılık yanal yer değiştirmelerin yağsız duruma göre daha az olduğu tespit edilmiştir. Yani yapı zemin ilişkisi gerçege daha yakın modellendiğinde görülmüş ki, zeminin esneme yeteneği oturmalarda meydana gelen kapasite azalmasını olumlu yönde etkilemektedir.

Bu çalışma kapsamında yapılan değerlendirmeler deneysel formüller yardımcı ile analitik hesaplamalar sonucunda elde edilmiştir. Konunun daha derin iırdelenmesi için deneysel olarak ele alınması ve elde edilen sonuçların teorik sonuçlar ile karşılaştırılması konuya derinlik kazandıracaktır.
KAYNAKLAR


[26] R Ulusay, Ö Aydan 1997 Tünel açma makinalarıyla yapılan kazı işlemlerinin olumlu ve olumsuz yönlerinin değerlendirilmesi: Takisato Tüneli (Japonya) örneği. jeoloji mühendisliği, Sayı. 51  51-61

[27] İ. ocak, K. Möröy 2006 Control Of Surface Settelements With Umbrella Arch Medhod In Second Stage Excavatıons Of İstanbul Metro D.P.Ü. Fen Bilimleri Enstitüsü Fen bilimleri enstitüsü dergisi sayı 12  79-94


[29] FEMA-356, 2000, Prestandard and commentary for the seismic rehabilitation of buildings, ASCE, Reston, VA, USA.


ÖZGEÇMİŞ