Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical and Electronics Engineering

Permanent URI for this collection


Recent Submissions

Now showing 1 - 5 of 105
  • Publication
    Open Access
    Design of 24-28 GHz band 5G Antenna Based on Symmetrically Located Circular Gaps
    5G (fifth generation) cellular system is expected to work in a wide frequency range to meet the demand for mobile services and applications. Antennas will be addressed to the future 5G applications should pose superior characteristics, such as high gain and ultra-large bandwidth response by considering atmospheric absorption/free-space path loss on planned millimeter-wave frequency range of 5G communications. Therefore, antenna design for the future 5G applications is a challenging process. In this article we present a high-gain, broadband mm-Wave antenna based on a circular patch structure with a ground plane and resonator gaps. The designed antenna is analyzed using a widely used full-wave electromagnetic solver. The major antenna figure-of-merits including reflection coefficient, VSWR (voltage-standing wave ratio), antenna patterns in E- and H-planes, surface current distribution, antenna directivity and maximum gain, are obtained. The simulation results show that the gapped circular patch based design has the S11 response less than −10 dB in the frequency range of 21.6-28.8 GHz, which includes 24-28 GHz band of 5G cellular systems. Moreover, it is observed that the symmetrically located circular gaps on both top and bottom layers decrease the side lobe level under −10 dB value, and enhance the gain. We attribute the improvement in the antenna performance to the created current regions due to gaps hosting large vortex current distributions. With 10 mm × 13mm surface area, the proposed antenna demonstrates the peak gain of 9.44 dBi and the radiation efficiency of over 85%. High gain and compact size make this antenna suitable for coming 5G devices.
  • Publication
    Open Access
    Akciğer Basınçlarının İnvasiv Olmayan Yöntemler ile Kestirilmesi Amacıyla Akciğer Basınçları Ve Akciğer Sesleri Arasındaki İlişkinin Modellenmesi
    (TÜBİTAK EEEAG Proje, 2020) SAATÇI, ESRA; Öztürk, Ayşe Bilge; SAATÇI, ERTUĞRUL; Akan, aydın
    Solunum fonksiyon testleri solunum hastalıklarının teshis ve tedavisinin izlenmesinde kullanılırlar. Hastane ortamında yapılan bu testler pahalı cihazlara ve hastalar tarafından yapılan çesitli solunum manevralarına ihtiyaç duyarlar. Bu projenin amacı klinikte kullanılan solunum fonksiyon testlerinin yerine basit yöntemler ile solunum parametrelerinin bulunmasıdır. Bu amacı gerçeklestirmek için akciger basınçlarının girisimsel olmayan yöntemler ile kestirilmesi gerekmektedir. Basit mikrofonlar ile ölçülen akciger seslerinin ve havayolu gaz akıs hızı, sıcaklıgı ve nemi gibi çesitli solunum sinyallerinin istatistiksel ve fraktal sinyal isleme yöntemleri ile islenmesi bu projede önerilen temel yöntemdir. Solunum parametrelerinin kestiriminde bazı sinyal isleme yaklasımları önerilmis olsa bile solunum sesleriyle beraber istatistiksel ve fraktal sinyal isleme yöntemleri kombinasyonunun kullanılması bu projenin yenilikçi kısmıdır. Yapılan analizler sonucunda derin ve normal solunumların birlikte kullanıldıgı bronsial solunum sesinden elde edilen Hurst üstelinin agız içi basıncının kestiriminde en basarılı sonuçları verdigi görülmüstür. Ayrıca viskoelastik modelin yardımıyla kestirilen akciger basınçlarının gücü en iyi spirometrik testlerde FEV1 ve FVC parametreleriyle IOS testinde R5 parametresi ile ilişkilidir.
  • Publication
    Metadata only
    A Novel Compact, Broadband, High Gain Millimeter-Wave Antenna for 5G Beam Steering Applications
    (IEEE Institute of Electrical and Electronics Engineers, Inc., 2020) ÖZPINAR, HURREM; AKŞİMŞEK, HÜSEYİN SİNAN; Tokan, Nurhan Türker
    The millimeter-wave (mmWave) antennas for smartphones are one of the key components to complete the transition to 5G mobile networks. Although research and development of mmWave 5G antennas for cellular handsets are currently at the center of a significant research effort in both academia and telecommunication industry, a systematic antenna design approved by wireless community has not been proposed yet. With this communication, we propose a novel, high gain, wide band and compact mmWave 5G antenna, namely clover antenna for cellular handsets. The presented antenna has clover like conductor profile whose parameters can be adjusted to obtain high gain or wide band. The designed antennas are simulated with a widely used full-wave analysis tool. Numerical results of the mmWave antenna are confirmed successfully by the experimental results in ${{\text{24}}}$-${\text{28}}$ GHz band. The antenna achieves measured peak gain of ${\text{ 7.8}}$-${\text{9}}$ dBi in the band. Besides, with a ${\text{16}}$-element clover antenna array, the beam steering capability of the antenna is demonstrated. Beam steering between ${{ \pm \text{45}<^>\circ }}$ is achieved with low side lobe levels. Practical design considerations for the integration of the arrays in handset to obtain full-coverage in horizontal plane are investigated. The calculated spatial peak power density values of the proposed array on the outer surface of a head phantom are demonstrated for different scan angles.
  • Publication
    PyTHang: an Open-s-Source Wearable Sensor System for Real-Time Monitoring of Head-Torso Angle for Ambulatory Application
    (Taylor & Francis Ltd., 2021) GÜRKAN, GÜRAY
    This article presents the realization of a low-cost wearable sensor system and its Python-based software that can measure and record relative head-torso angle, especially in sagittal plane. The system is mainly developed to track head-torso angle during walk in a clinical study. The open-hardware part of the system is composed of a pair of triaxial digital accelerometers, a microprocessor, a Bluetooth module and a rechargeable battery unit. The reception of the transmitted acceleration data, visualization, interactive sensor alignment, angle estimation and data-logging are realized by the developed open-source graphical user interface. The system is tested on a tripod for verification and on a subject for practical demonstration. Developed system can be constructed and used for ambulatory monitoring and analysis of relative head-torso angle. Open-source user interface can be downloaded and developed for further (different) algorithms and device hardware.
  • Publication
    Open Access
    A Broadband, Polarization Insensitive, Wide Incidence-Angle-Slotted Ring/Lumped Resistor-Based Metamaterial Absorber for K-u-Band Applications
    (Istanbul University - Cerrahpaşa, 2021) AKŞİMŞEK, HÜSEYİN SİNAN
    A broadband-slotted ring/lumped resistor-based metamaterial absorber (MA) is presented in this study for K-u-band microwave applications. Numerical results of the MA indicate that it can achieve a broadband absorption ratio of more than 85% in the frequency range of 12.4-17.6 GHz and has active polarization insensitivity and wide incidence-angle response over the entire operation band between 12.4-17.6 GHz. The designed MA is ultrathin around lambda/14.7 in terms of wavelength at its lowest operation frequency, corresponding to 1.7 mm. The proposed unit-cell structure of the MA is novel, consisting of a slotted ring with eight symmetrically-located lumped resistors, FR-4 material, and a metallic ground, which is compatible with low-cost PCB fabrication; therefore, the MA is suitable for practical microwave applications in the K-u-band.