Person:
GÜRKAN, GÜRAY

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Dr. Öğr. Üyesi
Last Name
GÜRKAN
First Name
GÜRAY
Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Restricted
    An Open-Source User Interface Development for Widely Used Low-cost Spectrometer Designs
    (Istanbul Univ., 2020) GÜRKAN, GÜRAY
    In this paper, the development and test stages of an open-source user interface are presented. The developed user interface is compatible with most of the low-cost camera-based spectrometer designs in the literature. The spectrum image of the light source that is acquired with the camera is cropped and analyzed in a real-time thread after interactive calibration which is a special feature of the user interface. Camera controls (such as brightness, contrast, saturation, exposure and etc.) are also available through the user interface. For user interface testing, a common spectrometer design that is composed of a light-guide tube with a narrow entrance slit in one end and an image sensor on the other is constructed. Various compact fluorescent lamps and light emitting diodes are applied as light source and the results are presented. Developed cross-platform user interface can be used with lowcost spectrometer designs especially involving a web camera.
  • Publication
    Restricted
    PyTHang: an Open-s-Source Wearable Sensor System for Real-Time Monitoring of Head-Torso Angle for Ambulatory Application
    (Taylor & Francis Ltd., 2021) GÜRKAN, GÜRAY
    This article presents the realization of a low-cost wearable sensor system and its Python-based software that can measure and record relative head-torso angle, especially in sagittal plane. The system is mainly developed to track head-torso angle during walk in a clinical study. The open-hardware part of the system is composed of a pair of triaxial digital accelerometers, a microprocessor, a Bluetooth module and a rechargeable battery unit. The reception of the transmitted acceleration data, visualization, interactive sensor alignment, angle estimation and data-logging are realized by the developed open-source graphical user interface. The system is tested on a tripod for verification and on a subject for practical demonstration. Developed system can be constructed and used for ambulatory monitoring and analysis of relative head-torso angle. Open-source user interface can be downloaded and developed for further (different) algorithms and device hardware.