A Novel Genetic Algorithm-Based Improvement Model for Online Communities and Trust Networks

Journal Title
Journal ISSN
Volume Title
IOS Press
Research Projects
Organizational Units
Journal Issue
Social network analysis offers an understanding of our modern world, and it affords the ability to represent, analyze and even simulate complex structures. While an unweighted model can be used for online communities, trust or friendship networks should be analyzed with weighted models. To analyze social networks, it is essential to produce realistic social models. However, there are serious differences between social network models and real-life data in terms of their fundamental statistical parameters. In this paper, a genetic algorithm (GA)-based social network improvement method is proposed to produce social networks more similar to real-life data sets. First, it creates a social model based on existing studies in the literature, and then it improves the model with the proposed GA-based approach based on the similarity of the average degree, the k-nearest neighbor, the clustering coefficient, degree distribution and link overlap. This study can be used to model the structural and statistical properties of large-scale societies more realistically. The performance results show that our approach can reduce the dissimilarity between the created social networks and the real-life data sets in terms of their primary statistical properties. It has been shown that the proposed GA-based approach can be used effectively not only in unweighted networks but also in weighted networks.
Genetic Algorithm, Social Network Modeling, Trust Network, Online Communities
Bekmezci, Ilker, Ermis, Murat, and Cimen, Egemen Berki. ‘A Novel Genetic Algorithm-based Improvement Model for Online Communities and Trust Networks’. 40(1) : 1597 – 1608.