Publication: Linner İntegral Denklemler İçin Bazı Çözüm Yöntemleri
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
İntegral denklemler bilinmeyen fonksiyonun integral işareti altında yer aldığı lineer veya lineer olmayan denklemlerdir. Bu tip denklemler uygulamalı matematik ve fizik alanlarında sıklıkla kullanılmaktadır. Başlangıç değer veya sınır değer koşullarını sağlayan bir diferansiyel denklem tek bir integral denklem ile ifade edilebileceğinden, integral denklemler ve çözüm metotları oldukça önem taşımaktadır. İntegral denklemler esas olarak üç farklı başlık altında sınıflandırılırlar: 1. İntegrasyon limitlerine göre a. Her ikisi de sabit: Fredholm integral denklemi b. Bir tanesi değişken: Volterra integral denklemi 2. Bilinmeyen fonksiyonun konumuna göre a. Sadece integral işareti altında: Birinci tip b. İntegral işaretinin hem altında hem de dışında: İkinci tip 3. Bilinen fonksiyon
An integral equation is linear or nonlinear equation in which the unknown function occurs under an integral sign. This kind of equations appears widely in many areas of applied mathematics and physics. Integral equations and their solution methods are important because a differential equation given by either boundary or initial value conditions can be condensed into a single integral equation. Integral equations are classified according to three different dichotomies: 1. Limits of integration a. Both fixed: Fredholm integral equation b. One variable: Volterra integral equation 2. Placement of unknown function a. Only inside of the integral sign: First type b. Both inside and outside of the integral sign: the Second type 3. The value of the known function