Publication:
A New Topology Via a Topology

Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics Inc.
Research Projects
Organizational Units
Journal Issue
Abstract
In this extended abstract, we modify the definition of h-open set introduced in [1] by F. Abbas who neglects that the set of all h-open sets is a topology, and we show that the union of any family of h-open subsets of X is h-open that ensures that the set of all h-open subsets of a topological space (X, τ) forms a topology which is finer than τ, where a subset A of a topological space (X, τ) is said to be h-open if A ⊆ Int(A ∪ U) for every non-empty subset U of X such that U ∈ τ. We also give continuity type theorems. © 2022 American Institute of Physics Inc.. All rights reserved.
Description
Keywords
Continuity, Open Set, Topological Space
Citation
Dagci, F. I., & Cakalli, H. (2022, November). A new topology via a topology. In AIP Conference Proceedings (Vol. 2483, No. 1, p. 020003). AIP Publishing LLC.