Publication:
On the use of ensemble of classifiers for accelerometer-based activity recognition

Date
2015-12
Authors
Çatal, Çağatay
Tüfekçi, Selin
Pirmit, Elif
Kocabağ, Güner
Journal Title
Journal ISSN
Volume Title
Publisher
ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
Research Projects
Organizational Units
Journal Issue
Abstract

Activity recognition aims to detect the physical activities such as walking, sitting, and jogging performed by humans. With the widespread adoption and usage of mobile devices in daily life, several advanced applications of activity recognition were implemented and distributed all over the world. In this study, we explored the power of ensemble of classifiers approach for accelerometer-based activity recognition and built a novel activity prediction model based on machine learning classifiers. Our approach utilizes from J48 decision tree, Multi-Layer Perceptrons (MLP) and Logistic Regression techniques and combines these classifiers with the average of probabilities combination rule. Publicly available activity recognition dataset known as WISDM (Wireless Sensor Data Mining) which includes information from thirty six users was used during the experiments. According to the experimental results, our model provides better performance than MLP-based recognition approach suggested in previous study. These results strongly suggest researchers applying ensemble of classifiers approach for activity recognition problem. (C) 2015 Elsevier B.V. All rights reserved.

Description
Keywords
Activity recognition , Sensor mining , Mobile computing , Accelerometer , Ensemble of classifiers , Machine learning
Citation