• Home
  • About
  • Policies
  • Contact
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
Advanced Search
View Item 
  •   Home
  • İktisadi İdari Bilimler Fakültesi / Faculty of Economics and Administrative Sciences
  • İşletme / Business Administration
  • Makaleler / Articles
  • View Item
  •   Home
  • İktisadi İdari Bilimler Fakültesi / Faculty of Economics and Administrative Sciences
  • İşletme / Business Administration
  • Makaleler / Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Modified Fuzzy Art and a Two-Stage Clustering Approach to Cell Design

Thumbnail
Author
Özdemir, Rifat Gürcan
Gençyılmaz, Güneş
Aktin, Ayşe Tülin
Type
Article
Date
2007-12-01
Language
en_US
Metadata
Show full item record
Abstract
This study presents a new pattern recognition neural network for clustering problems, and illustrates its use for machine cell design in group technology. The proposed algorithm involves modifications of the learning procedure and resonance test of the Fuzzy ART neural network. These modifications enable the neural network to process integer values rather than binary valued inputs or the values in the interval [0, 1], and improve the clustering performance of the neural network. A two-stage clustering approach is also developed in order to obtain an informative and intelligent decision for the problem of designing a machine cell. At the first stage, we identify the part families with very similar parts (i.e., high similarity exists in their processing requirements), and the resultant part families are input to the second stage, which forms the groups of machines. Experimental studies show that the proposed approach leads to better results in comparison with those produced by the Fuzzy ART and other similar neural network classifiers. (C) 2007 Elsevier Inc. All rights reserved.
Subject
Intelligent Manufacturing
Artificial Neural Network
Group Tchnology
Clustering
Machine Cell Formation
Neural-Network Approach
Self-Organizing Map
Group Technology
Machine
Algorithm
Performance
Extension
system
Akıllı İmalat
Yapay Sinir Ağları
Grup Teknolojisi
Kümeleme
Makine Hücre Oluşumu
Sinir-Ağı Yaklaşımı
Kendi Kendini Düzenleyen Haritası
Makine
Algoritma
Performans
Uzatma
Sistem
URI
http://hdl.handle.net/11413/1007
Collections
  • Makaleler / Articles [49]
  • Scopus Publications [724]
  • WoS Publications [1016]

İstanbul Kültür University

Hakkında |Politika | Kütüphane | İletişim | Send Feedback | Admin

Istanbul Kültür University, Ataköy Campus E5 Karayolu Üzeri Bakırköy 34158, İstanbul / TURKEY
Copyright © İstanbul Kültür University

Creative Commons Lisansı
IKU Institutional Repository, Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Designed by  UNIREPOS

İKU Kütüphane


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageBy PublisherRightsPubmedScopusWoSThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageBy PublisherRightsPubmedScopusWoS

My Account

Login

İstanbul Kültür University

Hakkında |Politika | Kütüphane | İletişim | Send Feedback | Admin

Istanbul Kültür University, Ataköy Campus E5 Karayolu Üzeri Bakırköy 34158, İstanbul / TURKEY
Copyright © İstanbul Kültür University

Creative Commons Lisansı
IKU Institutional Repository, Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Designed by  UNIREPOS