• Home
  • About
  • Policies
  • Contact
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
Advanced Search
View Item 
  •   Home
  • Fen Edebiyat Fakültesi / Faculty of Letters and Sciences
  • Fizik / Physics
  • Makaleler / Articles
  • View Item
  •   Home
  • Fen Edebiyat Fakültesi / Faculty of Letters and Sciences
  • Fizik / Physics
  • Makaleler / Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

DFT And MP2 Based Quantum Mechanical Calculations And A Theoretical Vibrational Spectroscopic Investigation On Roscovitine, A Potential Drug To Treat Cancers

Thumbnail
Author
Balcı, Kubilay
Akkaya, Yasemin
Akyüz, Sevim
Palavan-Ünsal, Narçin
Type
Article
Date
2011-04
Language
en_US
Metadata
Show full item record
Abstract
Theoretically possible stable conformers of free roscovitine molecule in its electronic ground state were searched by means of molecular dynamics and energy minimization calculations performed using the MM2 force field. Afterwards, geometry optimization and thermochemistry calculations were carried out at room temperature for each of the found minimum-energy conformers using the MP2 and DFT based electronic structure methods and different Pople-style basis sets. The results obtained from these calculations confirmed that the strong intramolecular hydrogen bonding between the purine-nitrogen and hydroxyl-hydrogen atoms plays an important role on the rigidity of roscovitine molecule and causes a dramatic reduction in the number of the possible stable conformers of this molecule at room temperature. Furthermore, the same calculation results also revealed that two of the found seven stable conformers are considerably more favorable in energy than the others and thus dominate the experimental room-temperature spectra of the molecule. In the light of the theoretical vibrational spectral data obtained for these two conformers, a successful assignment of the fundamental bands observed in the experimental IR and Raman spectra recorded at room temperature for solid roscovitine and for its ethanol solution is given, and the effects of the substitution and intramolecular hydrogen bonding on the fundamental bands associated with purine and phenyl group vibrations are discussed in detail. In the fitting of the calculated harmonic wavenumbers to the corresponding experimental wavenumbers, two different scaling procedures, called 'dual scale factors' and `Scaled Quantum Mechanical Force Field(SQMFF) methodology', were applied independently. Both procedures yielded results generally in good agreement with the experiment; however, the SQM FF methodology proved its superiority over the other. Copyright (C) 2010 John Wiley & Sons, Ltd.
Subject
roscovitine
IR and Raman spectra
vibrational modes
SQM FF
dual scale factors
cyclin-dependent kinases
density-functional theory
raman-spectra
in-vivo
matrix-isolation
scaling factors
force-fields
cell-cycle
roskovitin
IR ve Raman spektrumları
titreşim modları
çift ölçek faktörleri
yoğunluk fonksiyonel teorisi
Raman spektrumları
matrix-izolasyon
ölçekleme faktörleri
kuvvet alanları
hücre döngüsü
URI
http://hdl.handle.net/11413/1418
Collections
  • Makaleler / Articles [293]
  • Scopus Publications [724]
  • WoS Publications [1016]

İstanbul Kültür University

Hakkında |Politika | Kütüphane | İletişim | Send Feedback | Admin

Istanbul Kültür University, Ataköy Campus E5 Karayolu Üzeri Bakırköy 34158, İstanbul / TURKEY
Copyright © İstanbul Kültür University

Creative Commons Lisansı
IKU Institutional Repository, Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Designed by  UNIREPOS

İKU Kütüphane


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageBy PublisherRightsPubmedScopusWoSThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageBy PublisherRightsPubmedScopusWoS

My Account

Login

İstanbul Kültür University

Hakkında |Politika | Kütüphane | İletişim | Send Feedback | Admin

Istanbul Kültür University, Ataköy Campus E5 Karayolu Üzeri Bakırköy 34158, İstanbul / TURKEY
Copyright © İstanbul Kültür University

Creative Commons Lisansı
IKU Institutional Repository, Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Designed by  UNIREPOS