Show simple item record

dc.contributor.authorKoç, Ayten
dc.contributor.authorEsin, Songül
dc.contributor.authorGüloğlu, İsmail
dc.contributor.authorKanuni, Müge
dc.date.accessioned2018-07-16T10:15:16Z
dc.date.available2018-07-16T10:15:16Z
dc.date.issued2014
dc.identifier.issn1303-5010
dc.identifier.uri
dc.identifier.urihttps://hdl.handle.net/11413/2106
dc.description.abstractAny finite dimensional semisimple algebra A over a field K is isomorphic to a direct sum of finite dimensional full matrix rings over suitable division rings. We shall consider the direct sum of finite dimensional full matrix rings over a field K. All such finite dimensional semisimple algebras arise as finite dimensional Leavitt path algebras. For this specific finite dimensional semisimple algebra A over a field K, we define a uniquely determined specific graph - called a truncated tree associated with A - whose Leavitt path algebra is isomorphic to A. We define an algebraic invariant kappa(A) for A and count the number of isomorphism classes of Leavitt path algebras with the same fixed value of kappa(A). Moreover, we find the maximum and the minimum K-dimensions of the Leavitt path algebras. of possible trees with a given number of vertices and we also determine the number of distinct Leavitt path algebras of line graphs with a given number of vertices.tr_TR
dc.language.isoen_UStr_TR
dc.publisherHacettepe Univ, Fac Sci, Hacettepe Univ, Fac Sci, Beytepe, Ankara 06800, Turkeytr_TR
dc.relationHacettepe Journal Of Mathematics And Statisticstr_TR
dc.subjectFinite dimensional semisimple algebratr_TR
dc.subjectLeavitt path algebratr_TR
dc.subjectTruncated treestr_TR
dc.subjectLine graphstr_TR
dc.titleA combinatorial discussion on finite dimensional Leavitt path algebrastr_TR
dc.typeArticletr_TR
dc.contributor.authorID112205tr_TR
dc.contributor.authorID145213tr_TR
dc.identifier.wos348691000006
dc.identifier.wos348691000006en
dc.identifier.scopus2-s2.0-84961736573
dc.identifier.scopus2-s2.0-84961736573en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record