• Home
  • About
  • Policies
  • Contact
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
Advanced Search
View Item 
  •   Home
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği / Computer Engineering
  • Makaleler / Articles
  • View Item
  •   Home
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği / Computer Engineering
  • Makaleler / Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A discretized tomographic image reconstruction based upon total variation regularization

Thumbnail
Author
Demircan Türeyen, Ezgi
Kamasak, Mustafa E.
Type
Article
Date
2017-09
Language
en_US
Metadata
Show full item record
Abstract
Tomographic image reconstruction problem has an ill-posed nature like many other linear inverse problems in the image processing domain. Discrete tomography (DT) techniques are developed to cope with this drawback by utilizing the discreteness of an image. Discrete algebraic reconstruction technique (DART) is a DT technique that alternates between an inversion stage, employed by the algebraic reconstruction methods (ARM), and a discretization (i.e. segmentation) stage. Total variation (TV) minimization is another popular technique that deals with the ill-posedness by exploiting the piece-wise constancy of the image and basically requires to solve a convex optimization problem. In this paper, we propose an algorithm which also performs the successive sequences of inversion and discretization, but it estimates the continuous reconstructions under TV-based regularization instead of using ARM. Our algorithm incorporates the DART's idea of reducing the number of unknowns through the subsequent iterations, with a 1-D TV-based setting. As a second contribution, we also suggest a procedure to be able to select the segmentation parameters automatically which can be applied when the gray levels (corresponding to the different densities in the scanned object) are not known a priori. We performed various experiments using different phantoms, to show the proposed algorithm reveals better approximations when compared to DART, as well as three other continuous reconstruction techniques. While investigating the performances, we considered limited number of projections, limited-view, noisy projections and lack of prior knowledge on gray levels scenarios. (C) 2017 Elsevier Ltd. All rights reserved.
Subject
Tomographic reconstruction
Discrete tomography
Total variation
Regularization
Segmentation
Algorithm
URI
https://doi.org/10.1016/j.bspc.2017.03.015
https://hdl.handle.net/11413/2234
Collections
  • Makaleler / Articles [100]
  • Scopus Publications [724]
  • WoS Publications [1016]

İstanbul Kültür University

Hakkında |Politika | Kütüphane | İletişim | Send Feedback | Admin

Istanbul Kültür University, Ataköy Campus E5 Karayolu Üzeri Bakırköy 34158, İstanbul / TURKEY
Copyright © İstanbul Kültür University

Creative Commons Lisansı
IKU Institutional Repository, Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Designed by  UNIREPOS

İKU Kütüphane


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageBy PublisherRightsPubmedScopusWoSThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageBy PublisherRightsPubmedScopusWoS

My Account

Login

İstanbul Kültür University

Hakkında |Politika | Kütüphane | İletişim | Send Feedback | Admin

Istanbul Kültür University, Ataköy Campus E5 Karayolu Üzeri Bakırköy 34158, İstanbul / TURKEY
Copyright © İstanbul Kültür University

Creative Commons Lisansı
IKU Institutional Repository, Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Designed by  UNIREPOS