• Home
  • About
  • Policies
  • Contact
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
Advanced Search
View Item 
  •   Home
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği / Computer Engineering
  • Bildiriler, Kongreler ve Sempozyumlar / Declarations, Congresses and Symposiums
  • View Item
  •   Home
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği / Computer Engineering
  • Bildiriler, Kongreler ve Sempozyumlar / Declarations, Congresses and Symposiums
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-document summarization for Turkish news

Thumbnail
Author
Demirci, Ferhat
Karabudak, Engin
İlgen, Bahar
Type
conferenceObject
Date
2017
Language
en_US
Metadata
Show full item record
Abstract
In this paper, we introduce our multi-document summarization system for Turkish news. The aim of the summarization system is to build a single document for multi document news that have been collected previously. The news were collected from several Turkish news sources via Real Simple Syndication (RSS). They were separated into clusters according to their topics. We utilized cosine similarity metric for the clustering process. Latent Semantic Analysis (LSA) has been used in the summarization phase. Multi-Document Summarization (MDS) differs from single document summarization in that the issues of compression, speed, redundancy and passage selection are essential inside the formation of ideal summaries. In this study, we utilized term frequency in document scoring which let us select the sentences with higher importance degree. We use ROUGE technique for evaluation of the system and our results show that the average of recall and precision percentage of this system is 43%. In the manual summarization phase, fifteen volunteers took part. The reason of low percentage is interpreted as getting texts randomly without any edit. It has been observed that the number of sentences and rate of summarization affect the accuracy rate.
Subject
RSS
Multi-Document Summarization
Cosine Similarity
LSA
ROUGE
SVD
URI
https://hdl.handle.net/11413/2269
Collections
  • Bildiriler, Kongreler ve Sempozyumlar / Declarations, Congresses and Symposiums [45]
  • Scopus Publications [724]
  • WoS Publications [1016]

İstanbul Kültür University

Hakkında |Politika | Kütüphane | İletişim | Send Feedback | Admin

Istanbul Kültür University, Ataköy Campus E5 Karayolu Üzeri Bakırköy 34158, İstanbul / TURKEY
Copyright © İstanbul Kültür University

Creative Commons Lisansı
IKU Institutional Repository, Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Designed by  UNIREPOS

İKU Kütüphane


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageBy PublisherRightsPubmedScopusWoSThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageBy PublisherRightsPubmedScopusWoS

My Account

Login

İstanbul Kültür University

Hakkında |Politika | Kütüphane | İletişim | Send Feedback | Admin

Istanbul Kültür University, Ataköy Campus E5 Karayolu Üzeri Bakırköy 34158, İstanbul / TURKEY
Copyright © İstanbul Kültür University

Creative Commons Lisansı
IKU Institutional Repository, Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Designed by  UNIREPOS