Show simple item record

dc.contributor.authorKoç, Ayten
dc.contributor.authorÖzaydın, Murad
dc.date.accessioned2018-07-27T08:37:06Z
dc.date.available2018-07-27T08:37:06Z
dc.date.issued2018-07
dc.identifier.issn0933-7741
dc.identifier.other1435-5337
dc.identifier.urihttps://doi.org/10.1515/forum-2016-0268
dc.identifier.urihttps://hdl.handle.net/11413/2383
dc.description.abstractWhen Gamma is a row-finite digraph, we classify all finite-dimensional modules of the Leavitt path algebra L(Gamma) via an explicit Morita equivalence given by an effective combinatorial (reduction) algorithm on the digraph Gamma. The category of (unital) L(Gamma)-modules is equivalent to a full subcategory of quiver representations of Gamma. However, the category of finite-dimensional representations of L(Gamma) is tame in contrast to the finite-dimensional quiver representations of G, which are almost always wild.tr_TR
dc.language.isoen_UStr_TR
dc.publisherWalter De Gruyter Gmbh, Genthiner Strasse 13, D-10785 Berlin, Germanytr_TR
dc.relationForum Mathematicumtr_TR
dc.subjectLeavitt path algebratr_TR
dc.subjectquiver representationstr_TR
dc.subjectMorita equivalencetr_TR
dc.subjectfinite-dimensional modulestr_TR
dc.subjectnonstable K-theorytr_TR
dc.subjectgraph monoidtr_TR
dc.subjectdimension functiontr_TR
dc.subjectK-Theorytr_TR
dc.subjectGraphtr_TR
dc.titleFinite-dimensional representations of Leavitt path algebrastr_TR
dc.typeArticletr_TR
dc.contributor.authorID112205tr_TR
dc.identifier.wos437914900008
dc.identifier.wos437914900008en
dc.identifier.scopus2-s2.0-85039078151
dc.identifier.scopus2-s2.0-85039078151en


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record