• Home
  • About
  • Policies
  • Contact
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
Advanced Search
View Item 
  •   Home
  • Fen Edebiyat Fakültesi / Faculty of Letters and Sciences
  • Matematik - Bilgisayar / Mathematics and Computer Science
  • Makaleler / Articles
  • View Item
  •   Home
  • Fen Edebiyat Fakültesi / Faculty of Letters and Sciences
  • Matematik - Bilgisayar / Mathematics and Computer Science
  • Makaleler / Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Janowski harmonic close-to-convex functions

Thumbnail
Author
Turhan, N.
Kahramaner, Yasemin
Polatoğlu, Yaşar
Type
Article
Date
2014-01
Language
en_US
Metadata
Show full item record
Abstract
A harmonic mapping in the open unit disc D{double-struck} = {z||z| < 1} onto domain Ω* ⊂ ℂ is a complex valued harmonic function w = f(z) which maps D{double-struck} univalently Ω*. Each such mapping has a canonical representation f(z) = h(z) + g(z), where h(z) and g(z) are analytic in D{double-struck} and h(0) = g(0) = 0, and are called analytic part and co-analytic part of f respectively. One says that f is sense-preserving if it has positive Jacobian Jf(z) = |h'(z)|2 - |g'(z)|2 > 0 in D{double-struck}. Its second dilatation w(z) = g'(z)/h'(z) is then analytic in D{double-struck} with |w(z)| < 1. We obtain in the present work the growth and distortion theorems for the Janowski harmonic close-to-convex functions on the open unit disc D{double-struck} by applying the Shear method in the most general case of the analytic dilatation function, that is when w(z) = g'(z)/h'(z) ⇒ w(0) = b1. In that case the second dilatation is w(z) = φ(z)+b1/1+b1φ(z) , where φ(z) is Schwarz function. © 2014 Nilgün Turhan, Yasemin Kahramaner and Yaşar Polatog̃lu.
URI
https://hdl.handle.net/11413/4339
Collections
  • Makaleler / Articles [209]
  • Scopus Publications [724]

İstanbul Kültür University

Hakkında |Politika | Kütüphane | İletişim | Send Feedback | Admin

Istanbul Kültür University, Ataköy Campus E5 Karayolu Üzeri Bakırköy 34158, İstanbul / TURKEY
Copyright © İstanbul Kültür University

Creative Commons Lisansı
IKU Institutional Repository, Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Designed by  UNIREPOS

İKU Kütüphane


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageBy PublisherRightsPubmedScopusWoSThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageBy PublisherRightsPubmedScopusWoS

My Account

Login

İstanbul Kültür University

Hakkında |Politika | Kütüphane | İletişim | Send Feedback | Admin

Istanbul Kültür University, Ataköy Campus E5 Karayolu Üzeri Bakırköy 34158, İstanbul / TURKEY
Copyright © İstanbul Kültür University

Creative Commons Lisansı
IKU Institutional Repository, Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Designed by  UNIREPOS