• Home
  • About
  • Policies
  • Contact
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
Advanced Search
View Item 
  •   Home
  • İktisadi İdari Bilimler Fakültesi / Faculty of Economics and Administrative Sciences
  • İşletme / Business Administration
  • Makaleler / Articles
  • View Item
  •   Home
  • İktisadi İdari Bilimler Fakültesi / Faculty of Economics and Administrative Sciences
  • İşletme / Business Administration
  • Makaleler / Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Yapay Sinir Ağları ile Öngörü Modellemesi

Thumbnail
View/Open
Yapay Sinir Ağları ile Öngörü Modellemesi.pdf (1.656Mb)
Author
Ataseven, Burçin
Type
Article
Date
2014
Language
tr
Metadata
Show full item record
Abstract
Gelişen teknolojiye paralel olarak artan işleme ve hesaplama gücü ile birlikte, karmaşık simülasyonların yapılması ve gelişmiş yapay zeka teknolojilerini kullanılarak temel kriterlere dayalı olarak geleceğe dönük öngörümleme modellemelerinin gerçekleştirmesi mümkün hale gelmiştir. Bu modellemelerin gerçekleştirilmesini sağlayan önemli bir uygulama alanı ise “Yapay Sinir Ağları”dır. Bu çalışmada öngörümleme tekniklerinden zaman serisi yöntemlerine giren “Box-Jenkins (ARIMA) Metodolojisi” ve “Yapay Sinir Ağları” yöntemlerinin öngörüperformanslarını karşılaştırarak en yüksek başarıyı sağlayan yöntemin belirlenmesi ve belirlenen yöntem yardımıyla 11 yıl için bir şirketten rastgele seçilen dört ürünün aylar itibariyle satış rakamlarının tahmin edilmesi amaçlanmıştır. Çalışmanın uygulama bölümünde öngörümleme tekniği olarak Yapay Sinir Ağlarının kullanımının daha başarılı sonuçlar ürettiği sonucuna varılmıştır.
 
Along with the processing and computation power increasing parallel with the developing technology, performing complex simulations and establishing forecasting models using developed artificial intelligence technologies based on the main criterions have been rendered possible. One important application field ensuring the possibility of these models is “Artificial Neural Networks”. In this study, it is aimed to determine the method providing the highest success by comparing the forecasting performances of the “BoxJenkins (ARIMA) Methodology” and “Artificial Neural Networks” which are included in the time series methods of the forecasting techniques and to forecast with the determined method the sales values of three products choosen randomly from the products being produced in a company for 11 years are aimed. In the application part of the study it is reached to conclusion that to use Artificial Neural Networks as a forecasting method will give more successful results.
 
Subject
Yapay Sinir Ağları
Öngörü Modelleri
Zaman Serileri Analizi
Box-Jenkins Metodolojisi
Artificial Neural Networks
Forecasting Methods
Time Series Analysis
Box-Jenkins Methodology
URI
https://hdl.handle.net/11413/4780
Collections
  • Makaleler / Articles [97]

İstanbul Kültür University

Hakkında |Politika | Kütüphane | İletişim | Send Feedback | Admin

Istanbul Kültür University, Ataköy Campus E5 Karayolu Üzeri Bakırköy 34158, İstanbul / TURKEY
Copyright © İstanbul Kültür University

Creative Commons Lisansı
IKU Institutional Repository, Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Designed by  UNIREPOS

İKU Kütüphane


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageBy PublisherRightsThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageBy PublisherRights

My Account

Login

İstanbul Kültür University

Hakkında |Politika | Kütüphane | İletişim | Send Feedback | Admin

Istanbul Kültür University, Ataköy Campus E5 Karayolu Üzeri Bakırköy 34158, İstanbul / TURKEY
Copyright © İstanbul Kültür University

Creative Commons Lisansı
IKU Institutional Repository, Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Designed by  UNIREPOS