Show simple item record

Kaplansky-Hılbert modüller üzerinde devresel kompakt operatörler

dc.contributor.authorGönüllü, Uğur
dc.date.accessioned2014-09-19T14:10:40Z
dc.date.available2014-09-19T14:10:40Z
dc.date.issued2014-05
dc.identifier.urihttp://hdl.handle.net/11413/714
dc.description.abstractThe first part of the thesis studies cyclically compact sets and operators on Kaplansky-Hilbert modules. A. G. Kusraev proved a general form of cyclically compact operators in Kaplansky-Hilbert modules using techniques of Boolean-valued analysis. We give a standart proof of this general form. Moreover, we obtain some characterizations of cyclically compact operators. The second part studies the Schatten-type classes of continuous Λ-linear operators on Kaplansky-Hilbert modules and investigates the duality of them. Furthermore, we show that the Hilbert-Schmidt class is a Kaplansky-Hilbert module. In the last part we define and study global eigenvalues of cyclically compact operators on Kaplansky-Hilbert modules and their multiplicities. We obtain Horn- and Weyl-type inequalities and Lidskiĭ trace formula for cyclically compact operators in Kaplansky-Hilbert modules.tr_TR
dc.language.isoen_UStr_TR
dc.publisherİstanbul Kültür Üniversitesi / Fen Bilimleri Enstitüsü / Matematik Bilgisayar Anabilim Dalıtr_TR
dc.subjectMatematiktr_TR
dc.subjectMathematicstr_TR
dc.titleCyclically compact operators on Kaplansky-Hilbert modulestr_TR
dc.titleKaplansky-Hılbert modüller üzerinde devresel kompakt operatörler
dc.typeThesistr_TR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record